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Series expansions for the 3p transverse Ising model at 7'=0
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School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia

Received 8 June 1994

Abstract. Both weak-coupling and strong-coupling series expansions are calculated for the
Ising model in a transverse field at zero temperature in three dimensions. Series are obtained
for the ground-state epergy, the magnetization, the susceptibility, and the energy gaps, on the
simple cubic, the body-centred cubic and the face-centred cubic lattices. The analysis of the
critical behaviour is consistent with the behaviour predictad by renormalization group theory for
the four-dimensional simple Ising model, There is a remarkable degree of universality between
all three lattices.

1. Introduction

The Ising model in a transverse field is a simple lattice spin model which describes a number
of real systems, as well as being of theoretical interest. Its Hamiltonian is

H=-1) Si§~TY § (1.1)
(i i

where the 57, S7 are quantum spin—% operators at each site /, and the sums run over all
nearest-neighbour pairs {(ij) and over all sites 7, respectively.

The model has been applied to a wide variety of physical systems including order—
disorder ferroelectrics, induced moment ferromagnets, and co-operative Jahn—Teller systems.
In most of these applications the operators are, in fact, pseudospins acting on the states of
two-level systems, and the transverse field describes transitions between these levels. These
applications, and others, have been discussed by Stinchcombe (1972) and Birgenean {1972).

On the theoretical side, it is known that the transverse Ising model Hamiltonian in 4
dimensions is the quantum Hamiltonian corresponding to the ordinary Euclidean Ising model
in {d + 1) dimensions (Pfeuty 1976, Suzuki 1976, Fradkin and Susskind 1978, Green ef al
1979), and can be obtained as an anisotropic limit of the logarithm of the transfer matrix
of the latter model. According to the universality hypothesis, both models should have the
same critical behaviour. More specifically, the transverse Ising model at zero temperature
is in an ordered phase ({57} # 0) unless I" exceeds some critical value I'y; and near I' = T,
the critical behaviour of this model as a function of " should be the same as that of the
four-dimensional Ising model as a function of temperature 7.

Now dimension four is the upper critical dimension for the Ising model, beyond which
the critical behaviour is that of mean field theory (for a review, see Brezin et af 1976).
Precisely at dimension four, the mean-field critical behaviour is modified by confluent
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logarithmic corrections. Larkin and Khmel Nitski (1969), followed by Wegner and Riedel
(1973) and Brezin et al (1973) applied renormalization group (RG) theory to show that the
singular behaviour expected for variouws thermodynamic quantities near T, is

specific heat: C ~ (i)' (1.2)
susceptibility: x ~ [t n|ept? (1.3)
spontaneous magnetization: M ~ [t]"2(In)e)'? (¢t > 04) (1.4)
energy gap: m o~ x Y2~ V20 )y~ (1.3)

where t = 1 — T/T, is the reduced temperature variable for the 4D Ising model, or
t = 1 ~T/T for the transverse Ising model in 3D. Our principal interest is to try and
verify these predictions for the transverse Ising model vsing series-expansion techniques.

Previous analyses of the 4D Ising model include a high-temperature expansion for the
susceptibility on a hypercubic lattice by Fisher and Gaunt (1964}, and longer expansions
for the susceptibility and fouth-field derivative by Gaunt et @/ (1979). Moore (1970)
derived expansions for the spin—spin correlation function, but were unable to distinguish any
logarithmic effect. Baker (1977) analysed the fourth-field derivative and the susceptibility,
and again saw no evidence of logarithmic cormrection terms, obtaining critical indices such
that

2A —dv — y = -0.302 £ 0.038 (1.6)
in violation of the hyperscaling relation predicted by RG theory
2 —dv—y =0, .7

Gaunt ef af (1979), in their more extensive study, found, on the contrary, that their results
were entirely consistent with the RG predictions.

More recently, Vohwinkel and Weisz (1992) have carried out low-temperature
expansions of the magnetization, susceptibilities and second moment. They find that their
extrapolated series agree well with Monte Carlo data of Jansen et af (1989), and also with
solutions of the renormalization group equations in the scaling region. They take these
results as support for the conclusion that the lattice ¢* theory in four dimensions, which
describes the model in the scaling region, has oaly a trivial continoum limit.

The transverse Ising model at T = O in three dimensions has also been the subject of
several studies. Pfeuty and Elliott (1971) calculated both weak-coupling and strong-coupling
series for the model, and showed in fact that the critical behaviour wag like that of the 4D
Ising model. Yanase, Takeshige and Suzuki (1976) used high-temperature expansions for
the correlation function and susceptibility to extrapolate to the T = 0 limit, and reached a
similar conclusion. Oitmaa and Plischke (1976) used a similar technique for the fluctuation
in the long-range order, but were unable to see any crossover to 4 = 4 critical behaviour
at T = (. Oitmaa and Coombs (1981) carried out a high-temperature expansion of the
susceptibility for the case of general spin §, and this time did see the expected crossover
behaviour,

In this paper we calculate both weak-coupling and strong-coupling series expansions for
the spin-% transverse Ising model at T = 0, involving the ground-state energy per site, the
susceptibility, the energy gap, and the magnetization. The lattices considered are the simple
cubic (5C), the body-centred cubic (BCC) and face-centred cubic (FCC) lattices. Estimates are
given of the critical points, critical indices, confluent logarithmic corrections, and universal
amplitude ratios at the critical point.

In section 2 of the paper we briefly summarize the method used to obtain the perturbation
series. In section 3 the analysis is carried out, and in section 4 our conclusions are presented.
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2, Series expansions

The strong-coupling (SC)} form, alternatively called the ‘high-temperature’ (HT) form, of this
Hamiltonian will be taken as
=~ Y of ~x X ofof kY af @
i 4 i
where (ij} denotes nearest-neighbour pairs of sites on a three-dimensional spatial lattice,
the ¢; are Pauli matrices acting on a two-state spin variable at each site, and x, which
corresponds to the inverse temperature in the 4D BEuclidean formulation, is the SC series-
expansion parameter. The magnetic field % is introduced in order to calculate the
magnetization and the susceptibility. If x is very large, the model can be described by
a weak-coupling (WC) or ‘low-temperature’ (LT) form
H'==}Y ofaf =LY of — 1K' Y o} (2.2)
(67} i 4
where the two Hamiltonians are related by

H{x) = H'(AM)/A x = 1/(41) h=h/{20). (2.3)
In each case the Hamiltonian without magnetic field (i.e. with 2 = 0} has the form
H=Hy+1tV (2.4)

where ¢ = x for the case of strong-coupling expansion, or = A for the weak-coupling
expansion. The term Hy is taken as the unperturbed Hamiltonian, and the term V then
acts as a perturbation, which flips the spin on nearest-neighbour pairs of sites {if} for the
strong-coupling expansion, or flips the spin on sites { for the weak-coupling expansion.

We have derived long perturbation expansions in the parameter ¢, using a linked cluster
expansion method due to Nickel (1980). The method has been explained in some detail in He
et al (1990}, where the same model was treated in two space dimensions, and the discussion
will not be repeated here. Both weak-coupling and strong-coupling series expansions have
been calculated for the ground-state energy per site Eg/N (Eg/N), the susceptibility

—_ e — - U —_—_——
X= "N e X T TN 902 =0 @5)

and the energy gap m (m'), and a weak-coupling expansion has been obtained for the
magnetization M’ = —~(1/N)3E[/ &W] w—g+ From equations (2.3), the relations between the
strong-coupling and weak-coupling observables, respectively, are

Eo(x) = Eg(A) /2 (2.6)
x(x) = 4Ax'(A) (2.7)
m(x) = m' () /M (2.8)

with x = 1/(4A).
From the ground-state energy, one can define the ‘specific heats’

x23%E, , A 82E]
Cix) = ~N a2 or )= ArTYY (29)
which then obey
Cx)=C'(\). (2.10)

The calculation of the ground-state energy and its derivatives involves a list of connected
clusters up to a certain number of sites (vertices} or bonds (edges), while for the calculation
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Table 1. The number of clusters generated for each lattice. Here nv is the number of sites, n&
is the number of bonds {edges}. ’

Ground-State energy Energy gap
Lattice Expansion Order No of clusters Order No of ¢clusters
sC 5C (HT) nb =14 4309 nb =13 5652
sC WC (LT) ny =12 12280 nv=11I 6228
BCC SC (HT) nb=14 6170 nb=13 7322
BCC wc (LT) =12 49021 nv =11 16491
FCC 8C (HT) nb =12 7176 rb=11 7174
FCC we (1T) nv=9 7215 ro=17 497

of the energy gap, both connected and disconnected clusters, including one or more isolated
vertices, are needed. Table 1 gives the number of clusters generated for each lattice. The
calculated series are listed in tables 2 and 3. Previously, Pfeuty and Elliott (1971) obtained
a weak-coupling series for the magnetization and a strong-coupling series for the energy
gap on the SC lattice up to order 3, while strong-coupling series up to order 7 for the
susceptibility on all three lattices were cobtained by Yanase et al (1976). Qur results agree
with these earlier calculations, and add nine new terms for the magnetization series, ten
new terms for the energy gap series, and seven new terms for the susceptibility (five in the
case of the FCC lattice). The remaining series are new, as far as we are aware,

3. Series analysis

The analysis of these perturbation series was carried out in stages, as follows,

3.1. Power-law singularities

To begin with, the series were analysed using standard Dlog Padé approximant and confluent
differential approximant methods (Guttmann 1989), to estimate the critical points and
the ‘effective’ power-law exponents, ignoring for the moment the expected logarithmic
corrections. The best behaved series are those for the strong-coupling energy gap: results
from [N/M] Dlog Padé approximants to these series are given in table 4. From this table,
we estimate that the critical point lies at x, = [0.19406(6), 0.14084(8), 0.09215(7)},
respectively, for the [SC, BCC, FCC] lattices. In table 5 the Dlog Padé estimates of the
critical parameters obtained from all the various series are listed, where the biased estimates
were calculated using the critical point values listed above.

It can be seen from table 5 that the ‘effective’ exponent values for p are a little greater
than 1, for v are a little greater than 0.5, for # are around 0.42-0.43, and for @ are small
and uncertain. These values are quite similar to earlier estimates for the 4D Ising model
(Moore 1970, Gaunt et al 1979) and the transverse Ising model (Pfeuty and Elliot¢ 1971).
They also appear qualitatively consistent, as least, with the RG predictions (1.2)—(1.5).

Now there are certain combinations of the observables whose leading singularities should
be purely power-behaved, according to (1.2)~(1.5). For instance, one expects M/ C ~ [¢|'/2,
X/ M ~|t|732 x/C ~ [¢|71, m2C ~ |t|, and m?*y ~ constant. To analyse the series for
these combinations, we firstly eliminate the effect of any antiferromagnetic singularity by
performing an Euler transformation

y=2x/(1+x/x{) (3.1)
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Table 2. Strong-coupling (high-temperature) geries in x for the ground-state energy per site
Eo/ N, the susceptibility ¥, and the energy gap m of the transverse Ising model. Coefficients of

x? are listed.
n Eo/N X m
sc lattice
| 1 2
10 6 -6
2 —7.500000000000x10! 3225000000000 10!  —6.000 000000 000
3 0.000000000000 1.725000000000x102  —1.500000000 000 x L0}
4 —1,359 375000000 9,080468 750000102  —4.650000000 000 10!
5 0.000 000000000 4.775895833333x10°  —~1.725000000000x10%
6 9433593750000 2496107682292x10*  —6.316171875000x10°
7 0.000000000000 1.304 100 138889 10°  —2.650 189453 125%10°
8 —9.680401611328x10! 6791495855711 10°  —1.060257824707x10*
9  0.000000000000 3.536163533925% 105  —4.735682995605x10%
10 —1.241021419525%10% 1.837660188197x107  —1.983770115700x10°
11 0.000 000 000 0600 $.548 768040118 x 107 —9.167337 492285 % 16°
12 ~1828322336101x10% 4955398251608x 108  —3.967955605 458 %108
13 0,000000000 000 2.571415145418%10°  —1,874254024 879% 107
14 —2.959553663 348 10° 1.333 149282 698 % 1017
BCC lattice
0 -1 1 2
1 0 8 -8
2 —1,000000000000 5.900000 000000 107 —1.200 000000000 x 10!
3 0.0000000600060 4.340000000000x 107 —4.200000000 00010
4 —4,562 500 000000 3.143145833333%10°  —1.740000 000 000x 102
5 0.000000000000 2,274983333333x20*  —8.872500 000 000 102
6 —5.804687500000x10! 1.636964299769x10°  —4.505250 000 000x 103
7 0.000000 000000 1.177594879823x 16°  —2.595150000000% 104
8§ —1.133810546875%10° 8.445830945366x 105  —1.435225275 879 10°
9 0.000000000000 6.056641 148835 % 107 —8.772396 340942 10%
10 —2.768 589 859772x10* 4335455001221 x108  —5.096307 178 719x 108
11 0.000000000000 3.103141112826x10°  —3.224563 470224 %107
12 —7.759 160598 470 % 10° 2218441 771801 <101 —1.934986229311x108
13 0.000000000000 1.585878065228x 10! —1.252095 780670 10°
14 —2,388247818341 %107 1.132723493755x 1012
FCC lattice
0 -1 1 2
1 ¢ 1z -12
2 —1.500000000000 1.365000000000x10°  —3.000000000000x 10!
3 —3.000000000000 1.527000000000x 10°  —1.470000000 000102
4 —1.228125000000:x 10! 1.694290625000x10°  —9.825000000000x 102
5 —6.187500000000x10! 1.870950833333x10°  —7.336125000000x10°
6 —3.638203125000x10° 2.059663006076x10°  —5.922728906250x10°
7 =2.367703 125000x10° 2.262540374913%107  —5.016284 003906 10°
8 —1.657379077 148%10% 2.481482155913% 108 —4.401691 375122x108
9 —1.225060279541x10° 2.718335268007x10°  —3.965 104 240860107
10 —9.447149492455x 10° 2.974977513949x 1070 —3.646206 044 064 %108
11 -7.536782435456x10° 1.253379986588x 1017 —3.408623 105 456 x 10°
12 —6.182305303 681 x107 3.555580413812% 1012

where x¥ is an estimate of the exact critical point x.. Then Dlog Padé approximants
and confluent differential approximants to the transformed series were calculated. The
results obtained are shown in table 6 (where the preferred critical points used in the
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Table 3. Weak-coupling (low-temperature} series in A? for the ground-state energy per site
E}/N. the magnetization M”, the susceptibility x”, and the energy gap m of the transverse [sing
model. Coefficients of (A%)" are listed.
n EQ/N M ¥ m
sC lattice
o - 3 0 3
1o—3 -3 # -4
2 —7.407407407407x10~3  —2,518518518519x 1072 5.965432098765%1072  2.370370370370% 107!
3 —4703115814 2710~ —7.334621091 235 1073 3714552864062 10~ —4.193768 371 54610~
4 =1.911356220586x10™%  =3.133155006365%10™3 2440762 2292855 1072 4.872528226916x10™!
5 =2164811580306x10™%  =1.235233224717x1073 1.472173854186x 1072 —~6.979931014 337x 10~
6 —1.796353660384%10™5  —6.177842806839x10™4 9346087036334 107> 1000570272574
7 —2.946525630590x10~%  =2.790562317 414x 104 5658413119090% 1073  —1.510053 596210
8 —2.296328263288% 10~  —1.452183554366x10~4 3516623255080 1073 2.343 670970861
5 —4693484241TT6%1077  =7.023368199928x10°5 2.124781376080x 10~F  —3.731688 168207
10 ~3.887742149811x10°7  —3773175616517x 1075 1308667686 017x10™%  6.054 197893638
11 —9.343649339950x10~%  —1.507 194514459107 7906721101 787 x 10~4
12 —7.293583970008x30~8  —1.039438213977x10"5 4,836 289 875998 10~ 4
BCC lattice
0 -l 3 0 4
S % # ~3
2 —=2.232142857143x10™%  —6.776147959184x 103 1224262026239 102 3687169312 169x10~2
3 —5580357142857x10™%  —9.992825255102x10"4 3860804254 738% 10~ ~5.22172269] 134102
4 —1.957231424507%107%  —2.322041 501 665 10— 1.335770380000x 10~3 2375114717773 1072
5 —1207665353680x10~%  —4.8R6340516567x 1073 4.262910657885% 10~% - 1.530836 539034102
6 —4.540481484405%10~7  —1,262825900862x 103 1.412688250449% 10~ 9.459937604643x10~3
7 —-4024063875282x10~%  _3.019483214887x10~¢ 4,499583283 742x 10~% 6300603 374835% 1073
$  —1.645418348431x10°%  -B8215758585917x 1077 1465460360330 10=5  4.261687933437x10"3
9 —1.943867680373x107% 2112953648 144x 1077 4,669 547 549 564% 10~%  ~2.968204985957x 03
10 —7.518643482234x10~" 5008769 7686231078 1507440176 516x 1076  2.099263974982x 1073
11 —1.089495959150xt0=1" —1.588701042712x 108 4.802565 173811 %107
12 —3.969533809 196X 0~} —4.521500817766x 109 1.542268 523 379x 107
FCC lattice
0o -% 3 0 6
1 =L _1 1 _7
3 T T B
2 —4208754208754x10~%  —1128711355984x 103 1302483 141794103 —1.269 360269 360% 102
3 —1376347651600x10"%  —8.321204742688x 103 2021212801 814x10~%  —B.603484011312x10™4
4 —6674358915275x10~7  —7,355853703436%10~6 2.865270148995% 105 —7.091 996447 689% 105
5 —41B1512501399x10~%  —7,177108434 3261077 4013135029 368%10~%  —6.983003710967x10~%
6 —3.079228652626x10~%  —7.456917782882x10~8 5.584520083258%10™7  —1.4272367297102x10™7
7 —2407422075250% 1010 —8.043737090472x1077 7721 536061 07510~ 8
8 =2.101305991 0671071 —8,964144028677x 1010 1.064268397 556108
9 —1.942081382111x10"2  —1,023260133901x10-10 1483661247996 107

biased estimates are obtained from the later analysis). It can be seen that the critical
exponent estimates {residves) for the weak-coupling series are reasonably consistent with
the expected values, to within an accuracy of 5% or so. The series for m2y shows
no evidence of singular behaviour. The strong-coupling series are not so well behaved,
however.

A further test of the power-law exponents can be made by dividing out the expected
logarithmic corrections. Assuming the critical point is known, each series can be multiplied
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Table 4, Diog Padé approximants to the strong-coupling (HT) energy gap series. An asterisk
denotes a defective approximant.

N [N/N =1}
Pole (residue)

[N/N]
Pole (residue)

(NN + 1]
Pole (residue)

5C lattice

0.196 152(0.577 350)
0.194 192(0,552952)
0.194 480(0.557 851)
0.194 101(0,547 781}
0.194061(0.546 230}

[+ B WV RN - PSR S ]

cc [attice

0.141 694(0.564 296)
0.141 825(0.564 778y
0.141146(0.555995)
0.140 848(0.545 349)
0.140803(0.543097)

lattice
0.092 763(0.564 986)
0.092 129(0.543978)
0.092 173(0.546258)
0.091979(0.521 730)*

m&uwﬁ [« WP R T

0.196081(0.576715)
0.194 625(0.560 522)
0.194 049(0.545 899)
0.194 078(0.546 916}
0,194 094(0.547 430)*

0.141588(0.563011)
0,140 036(0.504 448)*
0.140 869(0.546 289)
0.140905(0.547 443)y*
0.140 762(0.540 30%)*

0.092492(0.558737)
0.092 190(0.547 238)
0.092 115(0.541 807y
0.092 082(0.538 216)*

0,194 825(0.563 611)
0.196 827(0.522 489)*
0.194 107(0.548 016}
0.194 063(0.546 329)

0.141 345(0.55% 076}
0.140932(0.548 712)
0.140 840(0.544 968)
0.140777(0.541 366)*

0.092 551(0.560 040)*
0.092 164(0.545 699}
0.091 883(0.49% 527)*

Table 5. Estimates of singularity parameters for the second-order phase transitions, obtained by
Dlog Padé approximants io the series listed in table 2 and 3, Both biased (b} and unbiased (ub)

estimates are listed.

wce (LT) SC (HT)
Series  Pole Residue Pole Residue

ub b ub b
5C lattice; the critical point biased at x. = 0.19406(6), AZ = 1.6596(10)
c A2 = 1.72(5) o =0.14(3) 0.07(4) x2 = 0.040(3) o =032 0.2(1)
M A2 = 1.662(5) B=043(2) 0.425(T)
X 2 =161  y=L176) 111(5) xe =01940(4)  p = 1.08(2) 1.086(3)
m A2 = 1.66(4) v = 0.5(1) B355(10)  x. =0.19406(6) v =10.547(2) 0.546(2)
BCC lattice: the critical point biased at x, = 0.14084(8), 13 =3.151(4)
C 22 = 3.23(8) a=0.12(4) 0.07(2) x = 0.021(1) o =032 0.2(1)
M AL=3.151(4) B =0426(7) 0.4286)
e X =3.16(1) y = 1.14(8) 1.09(5) e =0.1408(1) ¥ =1.08(1) 1.084(10)
m A2 =313 v = 0.5(1) 0.543(6) X =0.14084(8) v == 0.542(6) 0.545(4)
FCC lattice: the critical point biased at x, = 0.092 15(7), )LE = 7.36(1}
c A2=78100 o=0133)  0.083) xe = 0.0937(6) o =032 0.23(15)
M AE = T.36(4) B =0.42(2) 0.428(7)
X 13 = 7.41{4) y = 1.16(3) 1.12(5) X =0.0921(1) y = 1.08(2) [.084(19)
nt A =7.38(2) v = 0.56(1) 0.555(8)  x=009215(7) v=0.545(10) 0.545(5)

Specific heat: C ~ (x; — x)~%,
Magnetization: M ~ {x. — )8,
Susceptibility: x ~ (. —x)7Y.
Energy gap: #m ~ (%, — x)¥.

by another series which cancels out the logarithmic correction terms listed in (1.2)-(1.5),
and the resultant series can be analysed for power-law singularities using Dlog Padé
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Table 6. Estimates of singularity patameters obtained by Dlog Padé approximants and confluent
different differential approximants to selected combinations of the series listed in tables 2 and 3,

Both biased (b} and unbjased (ub)} estimates are listed,

we (LT) sC (HT)

Series Pole Residue Pole Residue
ub b ub b

sc lattice: the critical point biased at . = 0.19386(2), A2 = 1.6630(3)
M/C 13 = 1.665(3) 0.54(2) 0.52(2)
xiM A2 = 1.664(5) —~1.575) —1355(4)
x/C A= 1.664(10) —1.04(5) —1.03(4) x; = 0,193(4) —07(3*  -08(1)
miC A2 = L.66(4) 1.0(1) 1023} 2 = 0.193(3) 0.7(43 1.0(1}
miy no pole found x; = 0.20(I) 0.01(1) 0.005(5)
BCC lattice: the critical point biased at xc = 0.1407(8), A2 = 3.157(3)
M/C A2 =3.161(5) 0.53(3) 0,52(2)
x/M 32 =3.159(5) —1.56(4) —1.54(3)
x/C 2 =3.161(4) —1.04(3) —1.02(%) X = 0.14(1) —~0.7(2*  —0.9(1)
miC A =3.16(2) 1.00(5) 1.002(5) Ze = 0,14(1) 0.3(3)" LoD
miy no pole found X = 0.147(4) 0.01(1) 0.003(3)
£oC lattice: the critical point biased at xc = 0.09206(2), A% = 7.375(3)
M/C A2 =7.39(2) 0.54(3) 0.54(2)
xiM A2 == 738(1) —1.56(4} —1.53(4)
x/C A2 = T737(2) —1.02¢2)  —1.02(1) o= 0.0018(10) —07(2F  -0.8(2)
mic ;é = 7.38(3) 1.02(4) 1.02(2) xe = 0.0915(10) 0.7(2)* LOCL)
mix no pole found x: = 0.095(4) 0.01(1) 0.004(4)

2 All estimates defective.

Table 7. Biased estimates of power-law exponents for the series listed in tables 2 and 3, with
the expected logarithmic corrections cancelled out using multiplier functions t; = [~ In{l —

x[5)/F{x2 0 = = InQ — x/x0) f(x [ VS

5¢ (HT)

RG prediction

wc (IT)

Series Residue RG prediction Residue
s¢ lattice: the critical point biased at x; = 0.19386(2), 2.3 = 1.6630(3)
1nC no pole found no pole -0.1(1)
nM 0.52(2) 0.5
nhx —1.03(2) -1 =0.99(1)
tam Q.51(1) 05 0.495(10)
Bce lattice: the critical point biased at xo = 0.140 T1(8), A2 = 3.157(3)
nc no pole found no pole —0.15(10)
nM 0.532(2) 0.5
fnx =1.01(2) -1 —0.99(2)
tam 0.50¢1) 0.5 0.50(1)
FCe lattice: the critical point biased at x. = 0.09206(2), A2 = 7.375(3)
nec no pole found no pole =0.15¢10}
uM 0.53(2) 0.5
nx —1,01(1) -1 —0.98(2)
tam 0.50(1) 0.5 0.495(10)

no pole

-1
6.5

no pole

-1

0.5

ne pole

0.5

approximants as usual. The results are shown in table 7. Again, the power-law exponents

are very close to the expected values, within errors of 2-5%.
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Table 8. Biased estimates of the logarithmic indices p for various series. Power-law singularities
have been multiplied out where necessary using functions | = (I — x/x:)" 112, t2 = (1 = x/x¢)

we (ET) 5C (HT)

Series Residue RG prediction Residue RG prediction

s lattice: the critical point biased at x, = 0.19386(2), 2 = 1.6630(3)

C 0.36(4) i 0.8(2) i
xM? 0.99(1) 1

M/m 0.47(8) i

xm? no pole found no pole —0.02(2) no pole
uM 0.29(4) i

tax 0.39(5) % 0.29¢3) 5

tim —0.15(5) -3 —0.143(5) ~%

Bee lattice; the critical point biased at x; = 0.14071(8}, A2 = 3.157(3)

c 0.33(4) i 0.8(1) t

xM? 0.9(1) 1

Mim 0.4(1) i

xm? no pole found 1o pole —0.02(2) no pole
nM 0.27(3) :

by 0.34(3) 5 0.30(4) i

tm —~0.13(3) -1 —0.14(2) -4

Foc lattice: the critical point biased at x, = 0.09206(2), A2 = 7.375(3)

c 0.33(4) 3 1.0101) 3

x M2 0.85(15) i

Mm 0.4(1) 3

xm? no pole found no pole —0.02(2) no pole
nM 0.27(4) %

tax 0.32(5) 3 0.26(8) %
nm —0.17(3) -3 —0.15(2) -3

3.2. Confluent logarithmic singularities

It is well known that it is virtually impossible to distinguish a logarithmic singularity from
a weak power-law singularity by numerical means. The best we can do is to apply various
consistency tests, assuming from the start that the power-law exponents are those given by
the RG predictions (1.2)~(1.5),

To begin with, there are certain combinations of observables whose leading singularities
should be purely logarithmic. For instance, the RG predicts C ~ |In|t||)/2, xM? ~1In¢|,
and M/m ~ (In[¢[[}/?. Now if a function f(x) has a logarithmic singularity of the form
P
1=

e

In (3.2)

flx)y ~ A(x)

where A(x) is analytic, then for x near x, we have

In{1 —x/x;)1df P
— L~ T 33
G/ Fax | F-x G5
Thus, given a previous estimate of the critical point x., we can obtain a biased estimate of
the index p by forming a Padé approximants to the series for the left-hand side of equation
(3.3). A similar method can be applied to the original observables M, y and m, once
the expected power-law singularities have been ‘multiplied out’. The resuits of such an
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analysis are shown in table 9. The estimates of the logarithmic indices p are generally in
quite reasonable agreement with the predicted values, at a level of accuracy 10-20%.

Another method of analysis was proposed by Guttmann (1978, 1989), and employed
previously by Gaunt er al (1978). We shall apply it to the weak-coupling susceptibility,
which 1s the best-behaved series for this purpose. Assume the series behaves as

x(x) = A1 — x/xe) ™ In(l — x fxc)i? (3.4)

where A(x) is analytic near x = x., and the exponent g is known, g = 1. Again, the
analysis begins by eliminating the effect of any antiferromagnetic singularity by performing
an Euler transformation as in (3.1). Writing the transformed series as

X0 =) ay" (3.5)

we next calculate the ratios r, = @, /a,—1. Then defining another function f(y) by

FO) ==l =0/ =) by (3.6)

with g* = 1, we calculate the ratios r; = by /b,-;. The basic aim is now to compare
the behaviour of the ratio r} for the mimic function f(x) with the behaviour of the r,
for a range of values of the parameter p*. The analysis is based upon the following two
observations. Firstly, as n — oo the sequence R, = r,/r; should approach x]! with zero
slope when p* = p. To allow for higher-order correction terms, the following extrapolants
are calculated:

N
Ry=Ro+ Y afn'  N=1234. (3.7)

i=1
Secondly, the exponent estimates A, = n(R,x; — 1) and their extrapolants must

simultaneously approach zero as 7 — oo, Some typical extrapolant values for the FCC lattice
are shown in table 9. Choosing the p value which gives the smallest linear extrapolant of
A, and ‘flattest’ extrapolant of R,, we estimate the critical parameters:

SC lattice:  x, = 0.19386(2) 7 =033(5) 3.9

BCC lattice: x. = 0.14071(8) p =0.32(4) 3.9

FCC lattice:  x. = 0,09206(2) p=032(4). (3.10)
These results are in good agreement with the RG prediction p = -;-

3.3. Critical amplitudes

The renormalization group analysis also provides universal predictions for ratios of the
amplitudes of the singular terms at the critical point (Brezin et al 1976). To be specific,
suppose a quantity f(t) has singular behaviour

=0

F@&) =~ F=) ™ Injejy? @3.11)

where F*{F~) is the critical amplitude at high (low) temperature, or strong (weak) coupling,
respectively. Then the ratios F*/F~ are predicted to take their mean-field values:

specific heat: AT/A™ =1 (3.12)
susceptibility: C¥/C™ =2 (3.13)
energy gap:  fH/f =1/v2. (3.14)
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Since we have both strong-coupling and weak-coupling series to hand, we can attempt to
check these predictions.

Biased estimates of the amplitude ratios can be obtained by the following technique.
Assuming that the singular behaviowr predicted by RG theory is correct, and an accurate
estimate of the critical point is available, one can extrapolate the strong-coupling and weak-
coupling series using integrated differential approximants (Guttmann 1989) to estimate the
function f at points X¢, equidistant from the critical point on either side. Then

+
L G L)
F- =0 f(—I)
where ¢ = 1 — x/x. for the strong-coupling side, or t = 1 — A./A for the weak-coupling
side. Because each quantity varies rapidly near the critical point, it is useful to ‘smooth’
each of these functions before making the extrapolations, by calculating approximants to
the series for [¢|9]In |z[|~P F (¢} rather than f(1) itself.

(3.15)

Specific hear. 'The behaviour of the specific heat itself, reconstructed from the extrapolation
procedure, is shown in figure 1. The ratio C(+f)/C(—t) is graphed as a function of ¢ in
figure 2. Near the critical point (£ = 0), we estimate that

1/3

[ 0.112(6)] — In (1 — x2/x2}/(x*/x%)] (SC lattice)
C =1 0.101(6)[ - In (1 — x%/22) /(x*/x)]°  (BeC lattice) (3.16)
| 0.092(5)[— In (1 — x%/x3)/(x*/xD)]""*  (rcc lattice)

from the strong-coupling side, or
0.8866(6)[ — In (1 —A%/32)/(A2/22)]"°  (sc lattice)

C'= 10849010 - In (1 —2%/22)/(32/32)]'®  (BCC lattice) G.17)
0.84()] — In (1 = A2/22)/ (32 A ]}

(FCC lattice)

1.5 T T T T T T T T "7

3 FCC{ BCC 5C
0 %’; 1
o 0.1 0.2 0.3 Figure 1. The specific heat as a Function of

X coupling x for each of the three lattices.
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0.15
o1k
H -
£
U L
~
— -
"
+ L
e’
© 0.05 |-
0 I SN SR TR S Figure 2. The ratio of the specific heats at
1 9.8 0.6 0.4 0.2 0 reduced couptings =z, as a function of ¢, for

t each Jattice.

from the weak-coupling side. Thus the critical amplitude ratio is found to be

0.13(1) (sC lattice)
0.12(1) (BCC lattice) (3.18)
0.11¢2) (FCC lattice)

AT i CGD
A- T =0 Ci(—t)

these values are a factor of 2 lower than the RG prediction. We remark that the ratio in
figure 2 is curving steeply upward as t — 0, and the error bounds in (3.18) may well be
underestimated.

It is worth noting at this point that Ahlers et al (1975) have performed a least-squares
fit to experimental data for the specific heat of a system belonging to the same universality
class as the present model, and found excellent agreement with the expected amplitude
ratio AT /AT = %. They were able to obtain accurate data at extremely small values of
t, |t] < 0.001, whereas our present series extrapolations become highly unreliable at such
small ¢ values.

Muagnetization. Near the critical point on the weak-coupling side, the magnetization is
found to be

172 (sC lattice)

(BCC lattice) (3.19)

0.43(1)(1 = 22222 [— 1n (1 = 22/22) /(33 /A2)]
M = 0.42(D(1 =222 = n (1 = A3A2) /(A3 2 2))
042(1)(1 = 2222 [= In (1 = 22/82) /(32 /A2)]

1/3

173 (FCC lattice).

The critical amplitude appears to be universal for all three lattices. In fact, if the
magnetization estimates are plotted against the ‘reduced’ coupling variable A/A., as in
figure 3, they lie very nearly on a universal curve at all couplings, obeying an approximate
‘law of corresponding states’.
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0.5 b~ -
H] r —— i
o4l J
03 .
=t L J
lr_ .. FCC lattice ]
----- BCC lattice 1
........... -+ 8C lattice i
o "'DIE"""""‘I"' Fipure 3. The magnetization M as a function
0 " 04 08 08 of reduced coupling X /i for each of the three
7\/ -)\c Iattices.
20 T
—_— FCC J
L= BCC J
L ceeearerreee 3C 4
15 i ﬁ
> 10 -
5 / | N
/j ‘
0 PO SR TR WOV AN T TS WA NN N SRS SROY TR B Mo s -
0 0.5 1 15 2 Figure 4. The susceptibility x as a function of
X/Xc reduced coupling x /x. for all three lattices.

Susceptibility. The susceptibility x (though ror x') similarly appears to obey a ‘law of
corresponding states’, as seen in figure 4. Near the critical point, it is found to be

(8C lattice)
(BCC lattice) (3.20)
(FCC lattice)

0.92(4)(1 = x/x) " [=In(1 — x/xc) /(x /%)
X = 3 0.86(5)(1 — x/x:) "' [= In(l — x/xc)/ (x /%)
0.86(6)(1 — x/xc) " [—In(1 — x/xc)/(x [xN'?
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x(+8)/x(-t)

21|l|1rl|nr||t|xl|||

1 0.8 0.8 0.4 oz 0 Figure 5. The ratio of the susceptibilities at
t =+t as a function of ¢ for each lattice.

from the strong-coupling side, and

0.15(3)(1 — 2230 7 [~ In (1 = ¥2/a3/ (33 /A 0] (sc lattice)
x'=10104@)(1 - 2327 [~ (1 = 2222 /(2] (ecclatice)  (3.21)
0.066(6)(1 — A2/A2) ' [—1n (1 — 22/32) /(2202317 (rec lattice)
from the weak-coupling side, so that the ratio
24(5) (sC lattice)

2.3(3) (BCC lattice) (3.22)
2.4(4) (FeC lattice) .
The ratio is curving rapidly downwards as ¢ — O (see figure 5), so that these results appear

reasonably consistent with the RG prediction C*/C~ =2, at a 20% level of accuracy. The
amplitude for y itself appears to be universal, in fact, for these three lattices.

ct ) x(+D
wmmee = | ]} —— =
C-  —0dhy'(—1)

Energy gap. The energy gap also behaves in a nearly universal fashion, as shown in
figure 6. Near the critical point, it behaves as

2.058)(1 — x/x) = In(l — x /x)/(x /x)] /8 (SC lattice)

m = { 200731 — x/x) [~ In(1 — x/x:)/(x/x)] V8 (BCC lattice) (3.23)
211501 — x/x) Y2 [— In(l — x/x)/(x /)18 (FCC lattice)

from the strong-coupling side, and
2.802)(1 = 2222 2[ = In (1 = A2/2) /(A2 A2 (SC lattice)

m' = 1395(3)(1 = AN [—in (1 =2222)/ (32T (Bec lattice)  (3.24)
6.093)(1 - 2232 [ —1n (1 = 2222)/02 D] (Fec lattice)

-1/6
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4 ¥ = T 'I T T T T I T T 1 L3 l T T T T
| ——-: FCC
L —---: BCC f’
R - SC j

y

! « v 1,

1+ / -
[+) PN R M S NN SN T S PR T S S A S S
0 0.5 1 L5 2 Figure 6. The energy gap m as a function of
X/Xs reduced coupling x /x, for all three lattices,
0 T
0.65 -
~— 5
0
\5 X 4
~ J
Pl
T o6k -
*—E/ L J
3 FCC R
0.55 BCC -
- sC 4
AP PP TS PRI SR
1 0.8 0.8 0.4 0.2 o Figure 7, The ratio of energy gaps at &r, as
t a function of ¢ for each lattice.

from the weak-coupling side. The amplitude ratio is

0.67(3) (SC lattice)

0.67(3) (BCC lattice) (3.25)
0.67(2) (FCC lattice) .

o man
Talat=: reny A

Since these ratios are curving upwards as ¢ — 0 (figure 7), these estimates again seem quite
compatible with the RG prediction f+/f~ = 1/+/2, at about a 5% level of accuracy. The
energy gap amplitudes themselves appear to be universal for these three lattices.
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T T T | Yy v v 1 [ F v ¢ ¥ [ T 7
4 ——-'—"'-erﬂ?_r_m-aﬁl::\ ]
35 - 7]
>¢ ]
NE 3 | b
25| ]
[ ——-: FCC lattice NN
| -~--: BCC lattice SN
[p— : SC lattice RO
2 YRR SRS RS ERTE BTN
) 0.5 1 15 Figure 8. The product m?y as a function of
X/ X, reduced coupling x/xc for all three lattices.
LI B St I B A NN B B L R R ML
SC
— 2
i)
J/ b
> L
E
£ L
~
) L
+
X 15f
I:
P AT N SR H ST A S R
1 0.8 0.8 0.4 0.2 O Figure 9. The ratio of m?y at &4, as 2

t function of ¢ for each lattice.

A final test can be obtained by extrapolating the series for m?y, which is predicted to
approach a constant value at the critical point. Figure 8§ shows the results for this quantity.
Near the critical point,

3.80(4) {8C lattice)
m?y = { 3.85(6) (BCC lattice) (3.26)
3.87(4) (FCC lattice)
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from the strong-coupling side, and

1.13(4) (5C lattice)
m?x’ = { 1.63(10) (BCC lattice) (3.27)
2.44(4) (FCC lattice)

from the weak-coupling side. The amplitude ratio is shown in figure 9, and at the critical
point it is found to be

1.08(5) (5C lattice)

1.O5(8) (BCC lattice) {3.28)
1.08(5) (FCC lattice} .

According to (3.12)~(3.14) this ratio should be exactly I, The result (3.28) is in fairly
good agreement with the prediction, at about a 3-10% level of accuracy. The results (3.26)

are aiso in good agreement with the combined results (3.23) and (3.20), which provides
evidence that the extrapolation procedure is consistent.

e (SO
=0 4m2y (1) [he

4. Conclusions

The results of the series analysis have mostly been consistent with the predictions of
renormalization group theory, Firstly, the power-law exponents at the critical point were
found to be consistent with the mean field values to within 5% or less. Then, assuming these
exponents do take their mean field values, the exponents of the confluent logarithmic terms
were found to be consistent with the predicted values at a 10-20% level of accuracy. And
finally, assuming both power laws and logarithms have the predicted exponents, the ratios
of the critical amplitudes above and below the critical point were found to approach their
expected universal values for the susceptibility and energy gap, within accuracies ranging
from 5~20%.

An exception is the critical amplitude ratio for the specific heat, which disagrees with
the predicted value by a factor of two. The ratio is curving sharply upwards near the critical
point, however, and the singularity in the specific heat is weak, so we do not place too much
weight on this discrepancy.

The results also show a remarkable degree of universality between the three different
lattices considered. When graphed against the ‘reduced” coupling or ‘temperature’ variable,
the resuits for the magnetization, susceptibility and energy gap are virtually indistinguishable
for all three lattices, not only near the critical point but at all couplings. Even the specific
heats are not very different. A ‘law of corresponding states’ seems to be obeyed very closely
in this system.
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