Series expansions for the 3D transverse Ising model at $\mathrm{T}=0$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 275425
(http://iopscience.iop.org/0305-4470/27/16/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:21

Please note that terms and conditions apply.

Series expansions for the 3D transverse Ising model at $\boldsymbol{T}=0$

Zheng Weihong \dagger, J Oitmaał and C J Hamer§
School of Physies, The University of New South Wales, Sydney, NSW 2052, Australia

Received 8 June 1994

Abstract

Both weak-coupling and strong-coupling series expansions are calculated for the Ising model in a transverse field at zero temperature in three dimensions. Series are obtained for the ground-state energy, the magnetization, the susceptibility, and the energy gaps, on the simple cubic, the body-centred cubic and the face-centred cubic lattices. The analysis of the critical behaviour is consistent with the behaviour predicted by renormalization group theory for the four-dimensional simple Ising model. There is a remarkable degree of universality between all three lattices.

1. Introduction

The Ising model in a transverse field is a simple lattice spin model which describes a number of real systems, as well as being of theoretical interest. Its Hamiltonian is

$$
\begin{equation*}
H=-J \sum_{\langle i j\rangle} S_{i}^{z} S_{j}^{z}-\Gamma \sum_{i} S_{i}^{x} \tag{1.1}
\end{equation*}
$$

where the S_{i}^{x}, S_{i}^{z} are quantum spin- $\frac{1}{2}$ operators at each site i, and the sums run over all nearest-neighbour pairs $\langle i j\rangle$ and over all sites i, respectively.

The model has been applied to a wide variety of physical systems including orderdisorder ferroelectrics, induced moment ferromagnets, and co-operative Jahn-Teller systems. In most of these applications the operators are, in fact, pseudospins acting on the states of two-level systems, and the transverse field describes transitions between these levels. These applications, and others, have been discussed by Stinchcombe (1972) and Birgeneau (1972).

On the theoretical side, it is known that the transverse Ising model Hamiltonian in d dimensions is the quantum Hamiltonian corresponding to the ordinary Euclidean Ising model in $(d+1)$ dimensions (Pfeuty 1976, Suzuki 1976, Fradkin and Susskind 1978, Green et al 1979), and can be obtained as an anisotropic limit of the logarithm of the transfer matrix of the latter model. According to the universality hypothesis, both models should have the same critical behaviour. More specifically, the transverse Ising model at zero temperature is in an ordered phase $\left(\left\langle S_{i}^{z}\right\rangle \neq 0\right)$ unless Γ exceeds some critical value Γ_{c}; and near $\Gamma=\Gamma_{c}$ the critical behaviour of this model as a function of Γ should be the same as that of the four-dimensional Ising model as a function of temperature T.

Now dimension four is the upper critical dimension for the Ising model, beyond which the critical behaviour is that of mean field theory (for a review, see Brezin et al 1976). Precisely at dimension four, the mean-field critical behaviour is modified by confluent

[^0]logarithmic corrections. Larkin and Khmel'Nitski (1969), followed by Wegner and Riedel (1973) and Brezin et al (1973) applied renormalization group (RG) theory to show that the singular behaviour expected for various thermodynamic quantities near T_{c} is
\[

$$
\begin{array}{ll}
\text { specific heat: } & C \sim(\ln |t|)^{1 / 3} \\
\text { susceptibility: } & \chi \sim|t|^{-1}(\ln |t|)^{1 / 3} \\
\text { spontaneous magnetization: } & M \sim|t|^{1 / 2}(\ln |t|)^{1 / 3} \quad(t \rightarrow 0+) \\
\text { energy gap: } & m \sim \chi^{-1 / 2} \sim|t|^{1 / 2}(\ln |t|)^{-1 / 6}
\end{array}
$$
\]

where $t=1-T / T_{\mathrm{c}}$ is the reduced temperature variable for the 4 D Ising model, or $t=1-\Gamma / \Gamma_{c}$ for the transverse Ising model in 3D. Our principal interest is to try and verify these predictions for the transverse Ising model using series-expansion techniques.

Previous analyses of the 4 D Ising model include a high-temperature expansion for the susceptibility on a hypercubic lattice by Fisher and Gaunt (1964), and longer expansions for the susceptibility and fouth-field derivative by Gaunt et al (1979). Moore (1970) derived expansions for the spin-spin correlation function, but were unable to distinguish any logarithmic effect. Baker (1977) analysed the fourth-field derivative and the susceptibility, and again saw no evidence of logarithmic correction terms, obtaining critical indices such that

$$
\begin{equation*}
2 \Delta-\mathrm{d} \nu-\gamma=-0.302 \pm 0.038 \tag{1.6}
\end{equation*}
$$

in violation of the hyperscaling relation predicted by RG theory

$$
\begin{equation*}
2 \Delta-\mathrm{d} \nu-\gamma=0 \tag{1.7}
\end{equation*}
$$

Gaunt et al (1979), in their more extensive study, found, on the contrary, that their results were entirely consistent with the RG predictions.

More recently, Vohwinkel and Weisz (1992) have carried out low-temperature expansions of the magnetization, susceptibilities and second moment. They find that their extrapolated series agree well with Monte Carlo data of Jansen et al (1989), and also with solutions of the renormalization group equations in the scaling region. They take these results as support for the conclusion that the lattice ϕ^{4} theory in four dimensions, which describes the model in the scaling region, has only a trivial continuum limit.

The transverse Ising model at $T=0$ in three dimensions has also been the subject of several studies. Pfeuty and Elliott (1971) calculated both weak-coupling and strong-coupling series for the model, and showed in fact that the critical behaviour was like that of the 4 D Ising model. Yanase, Takeshige and Suzuki (1976) used high-temperature expansions for the correlation function and susceptibility to extrapolate to the $T=0$ limit, and reached a similar conclusion. Oitmaa and Plischke (1976) used a similar technique for the fluctuation in the long-range order, but were unable to see any crossover to $d=4$ critical behaviour at $T=0$. Oitmaa and Coombs (1981) carried out a high-temperature expansion of the susceptibility for the case of general spin S, and this time did see the expected crossover behaviour.

In this paper we calculate both weak-coupling and strong-coupling series expansions for the spin- $\frac{1}{2}$ transverse Ising model at $T=0$, involving the ground-state energy per site, the susceptibility, the energy gap, and the magnetization. The lattices considered are the simple cubic (SC), the body-centred cubic (BCC) and face-centred cubic (FCC) lattices. Estimates are given of the critical points, critical indices, confluent logarithmic corrections, and universal amplitude ratios at the critical point.

In section 2 of the paper we briefly summarize the method used to obtain the perturbation series. In section 3 the analysis is carried out, and in section 4 our conclusions are presented.

2. Series expansions

The strong-coupling (SC) form, alternatively called the 'high-temperature' (HT) form, of this Hamiltonian will be taken as

$$
\begin{equation*}
H=-\sum_{i} \sigma_{i}^{z}-x \sum_{\langle i j\rangle} \sigma_{i}^{x} \sigma_{j}^{x}-h \sum_{i} \sigma_{i}^{x} \tag{2.1}
\end{equation*}
$$

where $\langle i j\rangle$ denotes nearest-neighbour pairs of sites on a three-dimensional spatial lattice, the σ_{i} are Pauli matrices acting on a two-state spin variable at each site, and x, which corresponds to the inverse temperature in the 4 D Euclidean formulation, is the SC seriesexpansion parameter. The magnetic field h is introduced in order to calculate the magnetization and the susceptibility. If x is very large, the model can be described by a weak-coupling (WC) or 'low-temperature' (LT) form

$$
\begin{equation*}
H^{\prime}=-\frac{1}{4} \sum_{\langle i j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}-\lambda \sum_{i} \sigma_{i}^{x}-\frac{1}{2} h^{\prime} \sum_{i} \sigma_{i}^{z} \tag{2.2}
\end{equation*}
$$

where the two Hamiltonians are related by

$$
\begin{equation*}
H(x)=H^{\prime}(\lambda) / \lambda \quad x=1 /(4 \lambda) \quad h=h^{\prime} /(2 \lambda) \tag{2.3}
\end{equation*}
$$

In each case the Hamiltonian without magnetic field (i.e. with $h=0$) has the form

$$
\begin{equation*}
H=H_{0}+t V \tag{2.4}
\end{equation*}
$$

where $t=x$ for the case of strong-coupling expansion, or $t=\lambda$ for the weak-coupling expansion. The term H_{0} is taken as the unperturbed Hamiltonian, and the term V then acts as a perturbation, which flips the spin on nearest-neighbour pairs of sites $\langle i j\rangle$ for the strong-coupling expansion, or flips the spin on sites i for the weak-coupling expansion.

We have derived long perturbation expansions in the parameter t, using a linked cluster expansion method due to Nickel (1980). The method has been explained in some detail in He et al (1990), where the same model was treated in two space dimensions, and the discussion will not be repeated here. Both weak-coupling and strong-coupling series expansions have been calculated for the ground-state energy per site $E_{0} / N\left(E_{0}^{\prime} / N\right)$, the susceptibility

$$
\begin{equation*}
\chi=-\left.\frac{1}{N} \frac{\partial^{2} E_{0}}{\partial h^{2}}\right|_{h=0} \quad \chi^{\prime}=-\left.\frac{1}{N} \frac{\partial^{2} E_{0}^{\prime}}{\partial h^{\prime 2}}\right|_{h^{\prime}=0} \tag{2.5}
\end{equation*}
$$

and the energy gap m (m^{\prime}), and a weak-coupling expansion has been obtained for the magnetization $M^{\prime}=-(1 / N) \partial E_{0}^{\prime} /\left.\partial h^{\prime}\right|_{h^{\prime}=0}$. From equations (2.3), the relations between the strong-coupling and weak-coupling observables, respectively, are

$$
\begin{align*}
& E_{0}(x)=E_{0}^{\prime}(\lambda) / \lambda \tag{2.6}\\
& \chi(x)=4 \lambda \chi^{\prime}(\lambda) \tag{2.7}\\
& m(x)=m^{\prime}(\lambda) / \lambda \tag{2.8}
\end{align*}
$$

with $x=1 /(4 \lambda)$.
From the ground-state energy, one can define the 'specific heats'

$$
\begin{equation*}
C(x)=-\frac{x^{2}}{N} \frac{\partial^{2} E_{0}}{\partial x^{2}} \quad \text { or } \quad C^{\prime}(\lambda)=-\frac{\lambda}{N} \frac{\partial^{2} E_{0}^{\prime}}{\partial \lambda^{2}} \tag{2.9}
\end{equation*}
$$

which then obey

$$
\begin{equation*}
C(x)=C^{\prime}(\lambda) \tag{2.10}
\end{equation*}
$$

The calculation of the ground-state energy and its derivatives involves a list of connected clusters up to a certain number of sites (vertices) or bonds (edges), while for the calculation

Table 1. The number of clusters generated for each lattice. Here $n v$ is the number of sites, $n b$ is the number of bonds (edges).

Lattice	Expansion	Ground-State energy		Energy gap	
		Order	No of clusters	Order	No of clusters
Sc	SC (HT)	$n b=14$	4309	$n b=13$	5652
SC	WC (LT)	$n v=12$	12280	$n v=11$	6228
BCC	SC (HT)	$n b=14$	6170	$n b=13$	7322
BCC	WC (LT)	$n v=12$	49021	$n v=11$	16491
FCC	SC (HT)	$n b=12$	7176	$n b=11$	7174
FCC	WC (LT)	$n v=9$	7215	$n v=7$	497

of the energy gap, both connected and disconnected clusters, including one or more isolated vertices, are needed. Table 1 gives the number of clusters generated for each lattice. The calculated series are listed in tables 2 and 3. Previously, Pfeuty and Elliott (1971) obtained a weak-coupling series for the magnetization and a strong-coupling series for the energy gap on the SC lattice up to order 3, while strong-coupling series up to order 7 for the susceptibility on all three lattices were obtained by Yanase et al (1976). Our results agree with these earlier calculations, and add nine new terms for the magnetization series, ten new terms for the energy gap series, and seven new terms for the susceptibility (five in the case of the FCC lattice). The remaining series are new, as far as we are aware.

3. Series analysis

The analysis of these perturbation series was carried out in stages, as follows.

3.1. Power-law singularities

To begin with, the series were analysed using standard Dlog Padé approximant and confluent differential approximant methods (Guttmann 1989), to estimate the critical points and the 'effective' power-law exponents, ignoring for the moment the expected logarithmic corrections. The best behaved series are those for the strong-coupling energy gap: results from $[N / M]$ Dlog Padé approximants to these series are given in table 4. From this table, we estimate that the critical point lies at $x_{\mathrm{c}}=[0.19406(6), 0.14084(8), 0.09215(7)]$, respectively, for the [SC, BCC, FCC] lattices. In table 5 the Dlog Pade estimates of the critical parameters obtained from all the various series are listed, where the biased estimates were calculated using the critical point values listed above.

It can be seen from table 5 that the 'effective' exponent values for γ are a little greater than 1 , for v are a little greater than 0.5 , for β are around $0.42-0.43$, and for α are small and uncertain. These values are quite similar to earlier estimates for the 4 D Ising model (Moore 1970, Gaunt et al 1979) and the transverse Ising model (Pfeuty and Elliott 1971). They also appear qualitatively consistent, as least, with the RG predictions (1.2)-(1.5).

Now there are certain combinations of the observables whose leading singularities should be purely power-behaved, according to (1.2)-(1.5). For instance, one expects $M / C \sim|t|^{1 / 2}$, $\chi / M \sim|t|^{-3 / 2}, \chi / C \sim|t|^{-1}, m^{2} C \sim|t|$, and $m^{2} \chi \sim$ constant. To analyse the series for these combinations, we firstly eliminate the effect of any antiferromagnetic singularity by performing an Euler transformation

$$
\begin{equation*}
y=2 x /\left(1+x / x_{c}^{*}\right) \tag{3.1}
\end{equation*}
$$

Table 2. Strong-coupling (high-temperature) series in x for the ground-state energy per site E_{0} / N, the susceptibility χ, and the energy gap m of the transverse Ising model. Coefficients of x^{n} are listed.

n	E_{0} / N	χ	m
Sc lattice			
0	-1	1	2
1	0	6	-6
2	$-7.500000000000 \times 10^{-1}$	$3.225000000000 \times 10^{1}$	-6.000000000000
3	0.000000000000	$1.725000000000 \times 10^{2}$	$-1.500000000000 \times 10^{1}$
4	-1.359 375000000	$9.080468750000 \times 10^{2}$	$-4.650000000000 \times 10^{1}$
5	0.000000000000	$4.775895833333 \times 10^{3}$	$-1.725000000000 \times 10^{2}$
6	-9.433 593750000	$2.496107682292 \times 10^{4}$	$-6.316171875000 \times 10^{2}$
7	0.000000000000	$1.304100138889 \times 10^{5}$	$-2.659189453125 \times 10^{3}$
8	$-9.680401611328 \times 10^{1}$	$6.791495855711 \times 10^{5}$	$-1.060257824707 \times 10^{4}$
9	0.000000000000	$3.536163533925 \times 10^{6}$	$-4.735682995605 \times 10^{4}$
10	$-1.241021419525 \times 10^{3}$	$1.837669188197 \times 10^{7}$	$-1.983770115700 \times 10^{5}$
11	0.000000000000	$9.548768040118 \times 10^{7}$	$-9.167337492285 \times 10^{5}$
12	$-1.828322336101 \times 10^{4}$	$4.955398251608 \times 10^{8}$	$-3.967955605458 \times 10^{6}$
13	0,000000000000	$2.571415145418 \times 10^{9}$	$-1.874254024879 \times 10^{7}$
14	$-2.959553663348 \times 10^{5}$	$1.333149282698 \times 10^{10}$	
BCC lattice			
0	-1	1	2
1	0	8	-8
2	-1.000000000000	$5.900000000000 \times 10^{1}$	$-1.200000000000 \times 10^{1}$
3	0.000000000000	$4.340000000000 \times 10^{2}$	$-4.200000000000 \times 10^{1}$
4	-4.562500000000	$3.143145833333 \times 10^{3}$	$-1.740000000000 \times 10^{2}$
5	0.000000000000	$2.274983333333 \times 10^{4}$	$-8.872500000000 \times 10^{2}$
6	$-5.804687500000 \times 10^{1}$	$1.636964299769 \times 10^{5}$	$-4.505250000000 \times 10^{3}$
7	0.000000000000	$1.177594879823 \times 10^{6}$	$-2.595150000000 \times 10^{4}$
8	$-1.133810546875 \times 10^{3}$	$8.445830945366 \times 10^{6}$	$-1.435225275879 \times 10^{5}$
9	0.000000000000	$6.056641148835 \times 10^{7}$	$-8.772396340942 \times 10^{5}$
10	$-2.768589859772 \times 10^{4}$	$4.335455001221 \times 10^{8}$	$-5.096307178719 \times 10^{6}$
11	0.000000000000	$3.103141112826 \times 10^{9}$	$-3.224563470224 \times 10^{7}$
12	$-7.759160598470 \times 10^{5}$	$2.218441771801 \times 10^{10}$	$-1.934986229311 \times 10^{8}$
13	0.000000000000	$1.585878065228 \times 10^{11}$	$-1.252095780670 \times 10^{9}$
14	$-2.388247818341 \times 10^{7}$	$1.132723493755 \times 10^{12}$	
FCC lattice			
0	-1	1	2
1	0	12	-12
2	-1.500000000000	$1.365000000000 \times 10^{2}$	$-3.000000000000 \times 10^{1}$
3	-3.000000000000	$1.527000000000 \times 10^{3}$	$-1.470000000000 \times 10^{2}$
4	$-1.228125000000 \times 10^{1}$	$1.694290625000 \times 10^{4}$	$-9.825000000000 \times 10^{2}$
5	$-6.187500000000 \times 10^{1}$	$1.870950833333 \times 10^{5}$	$-7.336125000000 \times 10^{3}$
6	$-3.638203125000 \times 10^{2}$	$2.059663006076 \times 10^{6}$	$-5.922728906250 \times 10^{4}$
7	$-2.367703125000 \times 10^{3}$	$2.262540374913 \times 10^{7}$	$-5.016284003906 \times 10^{5}$
8	$-1.657379077148 \times 10^{4}$	$2.481482155913 \times 10^{8}$	-4.401 691375122×10^{6}
9	$-1.225060279541 \times 10^{5}$	$2.718335268007 \times 10^{9}$	$-3.965104240860 \times 10^{7}$
10	$-9.447149492455 \times 10^{5}$	$2.974977513949 \times 10^{10}$	$-3.646206044064 \times 10^{8}$
11	$-7.536782435456 \times 10^{6}$	$3.253379986588 \times 10^{11}$	$-3.408623105456 \times 10^{9}$
12	$-6.182305303681 \times 10^{7}$	$3.555589413812 \times 10^{12}$	

where x_{c}^{*} is an estimate of the exact critical point x_{c}. Then Dlog Pade approximants and confluent differential approximants to the transformed series were calculated. The results obtained are shown in table 6 (where the preferred critical points used in the

Table 3. Weak-coupling (low-temperature) series in λ^{2} for the ground-state energy per site E_{0}^{\prime} / N, the magnetization M^{\prime}, the susceptibility χ^{\prime}, and the energy gap m of the transverse Ising model. Coefficients of $\left(\lambda^{2}\right)^{n}$ are listed.

n	E_{0}^{\prime} / N	M^{\prime}	χ^{\prime}	m^{\prime}
SC lattice				
0	$-\frac{3}{4}$	$\frac{1}{2}$	0	3
1	$-\frac{1}{3}$	$-\frac{1}{9}$	$\frac{2}{27}$	$-\frac{4}{3}$
2	$-7.407407407407 \times 10^{-3}$	$-2.518518518519 \times 10^{-2}$	$5.965432098765 \times 10^{-2}$	$2.370370370370 \times 10^{-1}$
3	$-4.703115814227 \times 10^{-4}$	$-7.334621091235 \times 10^{-3}$	$3.714552864062 \times 10^{-2}$	-4.193768371 546×10^{-1}
4	$-1.911356220586 \times 10^{-4}$	$-3.133155006365 \times 10^{-3}$	$2.440762229285 \times 10^{-2}$	$4.872528226916 \times 10^{-1}$
5	$-2.164811980306 \times 10^{-5}$	$-1.235233224717 \times 10^{-3}$	$1.472173854186 \times 10^{-2}$	-6.979931014 337×10^{-1}
6	$-1.796353660384 \times 10^{-5}$	$-6.177842806839 \times 10^{-4}$	$9.346087036334 \times 10^{-3}$	1.000570272574
7	$-2.946525630590 \times 10^{-6}$	$-2.790562317414 \times 10^{-4}$	$5.658413119090 \times 10^{-3}$	-1.510053596210
8	$-2.296328263288 \times 10^{-6}$	$-1.452183 .554366 \times 10^{-4}$	$3.516623255080 \times 10^{-3}$	2.343670970861
9	$-4.693484241776 \times 10^{-7}$	$-7.023368199928 \times 10^{-5}$	$2.124781376080 \times 10^{-3}$	-3.731688168207
10	$-3.887742149811 \times 10^{-7}$	$-3.773175616517 \times 10^{-5}$	$1.308667686017 \times 10^{-3}$	6.054197893638
11	-9.343649339950×10 0^{-8}	$-1.907194514459 \times 10^{-5}$	$7.906721101787 \times 10^{-4}$	
12	$-7.293583970008 \times 10^{-8}$	$-1.039438213977 \times 10^{-5}$	$4.836289875998 \times 10^{-4}$	
BCC lattice				
0	-1	$\frac{1}{2}$	0	4
1	$-\frac{1}{4}$	$-\frac{1}{16}$	$\frac{1}{32}$	$-\frac{5}{6}$
2	$-2.232142857143 \times 10^{-3}$	$-6.776147959184 \times 10^{-3}$	$1.224262026239 \times 10^{-2}$	$3.687169312169 \times 10^{-2}$
3	$-5.580357142857 \times 10^{-5}$	$-9.992825255102 \times 10^{-4}$	$3.860804254738 \times 10^{-3}$	-5.221722691134×10-2
4	$-1.957231424507 \times 10^{-5}$	$-2.322041501665 \times 10^{-4}$	$1.335770380000 \times 10^{-3}$	$2.375114717773 \times 10^{-2}$
5	$-1,207665353680 \times 10^{-6}$	$-4.886340516567 \times 10^{-5}$	$4.262910657885 \times 10^{-4}$	-1.530836939034×10-2
6	$-4.549481484405 \times 10^{-7}$	$-1.262825900862 \times 10^{-5}$	$1.412688250449 \times 10^{-4}$	$9.459937604643 \times 10^{-3}$
7	-4.024063875 282×10^{-8}	$-3.019483214887 \times 10^{-6}$	$4.499583283742 \times 10^{-5}$	$-6.300603374835 \times 10^{-3}$
8	$-1.645418348431 \times 10^{-8}$	$-8.215758585917 \times 10^{-7}$	$1.465460360330 \times 10^{-5}$	$4.263687933437 \times 10^{-3}$
9	$-1.943867680373 \times 10^{-9}$	$-2,112953648144 \times 10^{-7}$	$4.669547549564 \times 10^{-6}$	$-2.968204985957 \times 10^{-3}$
10	$-7.518643482234 \times 10^{-10}$	$-5.908769768623 \times 10^{-8}$	$1.507440176516 \times 10^{-6}$	$2.099263974982 \times 10^{-3}$
11	$-1.089495959150 \times 10^{-10}$	$-1.588701042712 \times 10^{-8}$	$4.802569173811 \times 10^{-7}$	
12	$-3.969533809196 \times 10^{-11}$	$-4.521500817766 \times 10^{-9}$	$1.542268523379 \times 10^{-7}$	
FCC lattice				
0	- $\frac{3}{2}$	$\frac{1}{2}$	0	6
1	$-\frac{1}{6}$	$-\frac{1}{36}$	108	$-\frac{7}{15}$
2	-4.208754 208754×10^{-4}	$-1.128711355984 \times 10^{-3}$	$1.392483141794 \times 10^{-3}$	$-1.269360269360 \times 10^{-2}$
3	$-1,376347651600 \times 10^{-5}$	$-8.321204 \underline{742688 \times 10^{-5}}$	$2.021212801814 \times 10^{-4}$	$-8.603484011312 \times 10^{-4}$
4	$-6.674358915275 \times 10^{-7}$	$-7.3558 .53 .703436 \times 10^{-6}$	$2.865270148995 \times 10^{-5}$	$-7.091996447689 \times 10^{-5}$
5	$-4.181512501399 \times 10^{-8}$	$-7.177108434326 \times 10^{-7}$	$4.013135029368 \times 10^{-6}$	$-6.983003710967 \times 10^{-6}$
6	$-3.079228652626 \times 10^{-9}$	$-7.456917782882 \times 10^{-8}$	$5.584520083258 \times 10^{-7}$	$-4.427236297102 \times 10^{-7}$
7	$-2.407422075250 \times 10^{-10}$	$-8.043737090472 \times 10^{-9}$	$7.721536061075 \times 10^{-8}$	
8	-2.101301991067 $\times 10^{-11}$	$-8,964144028677 \times 10^{-10}$	$1.064268397556 \times 10^{-8}$	
9	$-1.942081382111 \times 10^{-12}$	$-1.023260133901 \times 10^{-10}$	$1.463661247996 \times 10^{-9}$	

biased estimates are obtained from the later analysis). It can be seen that the critical exponent estimates (residues) for the weak-coupling series are reasonably consistent with the expected values, to within an accuracy of 5% or so. The series for $m^{2} \chi$ shows no evidence of singular behaviour. The strong-coupling series are not so well behaved, however.

A further test of the power-law exponents can be made by dividing out the expected logarithmic corrections. Assuming the critical point is known, each series can be multiplied

Table 4. Dlog Pade approximants to the strong-coupling (HT) energy gap series. An asterisk denotes a defective approximant.

N	$[N / N-1]$ Pole (residue)	$[N / N]$ Pole (residue)	$[N / N+1]$ Pole (residue)
SC lattice			
2	$0.196152(0.577350)$	$0.196081(0.576715)$	$0.194825(0.563611)$
3	$0.194192(0.552952)$	$0.194625(0.560522)$	$0.196827(0.522489)^{*}$
4	$0.194480(0.557851)$	$0.194049(0.545899)$	$0.194107(0.548016)$
5	$0.194101(0.547781)$	$0.194078(0.546916)$	$0.194063(0.546329)$
6	$0.194061(0.546230)$	$0.194094(0.547430)^{*}$	
BCC lattice			
2	$0.141694(0.564296)$	$0.141588(0.563011)$	$0.141345(0.559076)$
3	$0.141825(0.564778)^{*}$	$0.140036(0.504448)^{*}$	$0.140932(0.548712)$
4	$0.141146(0.555995)$	$0.140869(0.546289)$	$0.140840(0.544968)$
5	$0.140848(0.545349)$	$0.140905(0.547443)^{*}$	$0.140777(0.541366)^{*}$
6	$0.140803(0.543097)$	$0.140762(0.540309)^{*}$	
FCC lattice			
2	$0.092763(0.564986)$	$0.092492(0.558737)$	$0.092551(0.560040)^{*}$
3	$0.092129(0.543978)$	$0.092190(0.547238)$	$0.092164(0.545699)$
4	$0.092173(0.546258)$	$0.092115(0.541807)^{*}$	$0.091883(0.499527)^{*}$
5	$0.091979(0.521730)^{*}$	$0.092082(0.538216)^{*}$	

Table 5. Estimates of singularity parameters for the second-order phase transitions, obtained by Dlog Pade approximants to the series listed in table 2 and 3. Both biased (b) and unbiased (ub) estimates are listed.

Series	WC (LT)			SC (HT)		
	Pole	Residue		Pole	Residue	
		ub	b		ub	b
SC lattice: the critical point biased at $x_{c}=0.19406(6), \lambda_{\mathrm{c}}^{2}=1.6596$ (10)						
C	$\lambda_{c}^{2}=1.72(5)$	$\alpha=0.14$ (3)	0.07(4)	$x_{\mathrm{c}}^{2}=0.040$ (3)	$\alpha=0.3(2)$	0.2(1)
M	$\lambda_{\mathrm{c}}^{2}=1.662(5)$	$\beta=0.43$ (2)	0.425(7)			
χ	$\lambda_{c}^{2}=1.67(1)$	$\gamma=1.17(6)$	1.11(5)	$x_{c}=0.1940(4)$	$\gamma=1.08(2)$	$1.086(8)$
m	$\lambda_{\varepsilon}^{2}=1.66(4)$	$\nu=0.5(\mathrm{f})$	0.555(10)	$x_{c}=0.19406(6)$	$v=0.547(2)$	$0.546(2)$
BCC lattice: the critical point biased at $x_{\mathrm{c}}=0.14084(8), \lambda_{\mathrm{c}}^{2}=3.151(4)$						
C	$\lambda_{\mathrm{c}}^{2}=3.23$ (8)	$\alpha=0.12(4)$	0.07(2)	$x_{\mathrm{c}}^{2}=0.021(1)$	$\alpha=0.3(2)$	0.2(1)
M	$\lambda_{\mathrm{c}}^{2}=3.151(4)$	$\beta=0.426(7)$	$0.428(6)$			
χ	$\lambda_{c}^{2}=3.16$ (1)	$\gamma=1.14(6)$	1.09(5)	$x_{c}=0.1408(1)$	$\gamma=1.08(1)$	1.084(10)
m	$\lambda_{c}^{2}=3.1(3)$	$\nu=0.5(1)$	0.543(6)	$x_{c}=0.14084(8)$	$\nu=0.542(6)$	$0.545(4)$
FCC lattice: the critical point biased at $x_{\mathrm{c}}=0.09215(7), \lambda_{\mathrm{c}}^{2}=7.36(1)$						
C	$\lambda_{\mathrm{c}}^{2}=7.8(10)$	$\alpha=0.13$ (3)	0.08(3)	$x_{\mathrm{c}}=0.0937(6)$	$\alpha=0.3(2)$	0.23(15)
M	$\lambda_{\mathrm{c}}^{2}=7.36(4)$	$\beta=0.42(2)$	$0.428(7)$			
χ	$\lambda_{\mathrm{c}}^{2}=7.41$ (4)	$y=1.16(3)$	1.12(5)	$x_{\mathrm{c}}=0.0921(1)$	$\gamma=1.08(2)$	1.084(10)
m	$\lambda_{6}^{2}=7.38(2)$	$v=0.56(1)$	$0.555(8)$	$x_{\mathrm{c}}=0.09215(7)$	$v=0.545(10)$	$0.545(5)$

Specific heat: $C \sim\left(x_{\mathrm{c}}-x\right)^{-\alpha}$,
Magnetization: $M \sim\left(x_{\mathrm{c}}-x\right)^{\beta}$.
Susceptibility: $\mathrm{X} \sim\left(x_{\mathrm{c}}-x\right)^{-\gamma}$.
Energy gap: $m \sim\left(x_{2}-x\right)^{\nu}$.
by another series which cancels out the logarithmic correction terms listed in (1.2)-(1.5), and the resultant series can be analysed for power-law singularities using Dlog Padé

Table 6. Estimates of singularity parameters obtained by Dlog Padé approximants and confluent different differential approximants to selected combinations of the series listed in tables 2 and 3. Both biased (b) and unbiased (ub) estimates are listed.

Series	WC (LT)			SC (HT)		
	Pole	Residue		Poie	Residue	
		ub	b		ub	b
sc lattice: the critical point biased at $x_{\mathrm{c}}=0.19386(2), \lambda_{\mathrm{c}}^{2}=1.6630(3)$						
M / C	$\lambda_{\mathrm{c}}^{2}=1.665(3)$	0.54(2)	$0.52(2)$			
x / M	$\lambda_{\mathrm{c}}^{2}=1.664$ (5)	$-1.57(5)$	-1.55(4)			
x / C	$\lambda_{\mathrm{c}}^{2}=1.664(10)$	-1.04(5)	-1.03(4)	$x_{c}=0.193(4)$	$-0.7(3)^{2}$	-0.9(1)
$m^{2} C$	$\lambda_{c}^{2}=1.66(4)$	1.0(1)	1.02(3)	$x_{c}=0.193(3)$	$0.7(4)^{2}$	1.0(1)
$m^{2} \chi$	no pole found			$x_{\mathrm{c}}=0.20(1)$	0.01(1)	$0.005(5)$
BCC lattice: the critical point biased at $x_{\mathrm{c}}=0.14071(8), \lambda_{\mathrm{c}}^{2}=3.157(3)$						
M / C	$\lambda_{\mathrm{c}}^{2}=3.161(5)$	0.53(3)	0.52(2)			
χ / M	$\lambda_{c}^{2}=3.159(5)$	-1.56(4)	-1.54(3)			
\times / C	$\lambda_{\mathrm{c}}^{2}=3.161(4)$	-1.04(3)	-1.02(2)	$x_{\text {c }}=0.14(1)$	$-0.7(2)^{2}$	-0.9(1)
$m^{2} C$	$\lambda_{\text {e }}^{2}=3.16(2)$	$1.00(5)$	1.002(5)	$x_{\text {c }}=0.14(1)$	$0.8(3)^{\text {a }}$	1.0(1)
$m^{2} \chi$	no pole found			$x_{\text {c }}=0.147(4)$	0.01(1)	0.003(3)
FCC lattice: the critical point biased ot $x_{c}=0.09206(2), \lambda_{c}^{2}=7.375$ (3)						
M / C	$\lambda_{c}^{2}=7.39(2)$	0.54(3)	0.54(2)			
χ / M	$\lambda_{\mathrm{c}}^{2}=7.38(1)$	$-1.56(4)$	-1.53(4)			
x / C	$\lambda_{\text {c }}^{2}=7.37(2)$	-1.02(2)	-1.02(1)	$x_{\text {c }}=0.0916(10)$	$-0.7(2)^{\text {a }}$	-0.8(2)
$m^{2} C$	$\lambda_{c}^{2}=7.38(5)$	1.02(4)	$1.02(2)$	$x_{c}=0.0915(10)$	0.7(2) ${ }^{\text {a }}$	$1.0(1)$
$m^{2} \chi$	no pole found			$x_{\mathrm{c}}=0.095(4)$	0.01(1)	0.004(4)

${ }^{2}$ All estimates defective.

Table 7. Biased estimates of power-law exponents for the series listed in tables 2 and 3, with the expected logarithmic corrections cancelled out using multiplier functions $t_{1}=[-\ln (1-$ $\left.\left.x / x_{\mathrm{c}}\right) /\left(x / x_{\mathrm{c}}\right)\right]^{-1 / 3}, t_{2}=\left[-\ln \left(1-x / x_{\mathrm{c}}\right) /\left(x / x_{\mathrm{c}}\right)\right]^{1 / 6}$.

Series	WC (LT)		SC (ET)	
	Residue	RG prediction	Residue	RG predjction
sc lattice: the critical point biased at $x_{\mathrm{c}}=0.19386(2), \lambda_{\mathrm{c}}^{2}=1.6630(3)$				
$t_{1} C$	no pole found	no pole	-0.1(1)	no pole
$t_{1} M$	0.52(2)	0.5		
$t_{1} \mathrm{X}$	-1.03(2)	-1	-0.99(1)	-1
$t_{2} m$	0.51(1)	0.5	0.496(10)	0.5
BCC lattice: the critical point biased at $x_{c}=0.1407 \mathrm{t}(8), \lambda_{c}^{2}=3.157(3)$				
$t_{1} C$	no pole found	no pole	$-0.15(10)$	no pole
$t_{1} M$	0.52(2)	0.5		
$t_{1} \chi$	-1.01(2)	-1	-0.99(2)	-1
$t_{2} m$	0.50(1)	0.5	0.50(1)	0.5
FCC lattice: the critical point biased at $x_{c}=0.09206(2), \lambda_{c}^{2}=7.375(3)$				
$t_{1} C$	no pole found	no pole	-0.15(10)	no pole
$t_{1} M$	0.53(2)	0.5		
$t_{1} X$	-1.01(1)	-1	-0.98(2)	-1
$t_{2} m$	0.50(1)	0.5	0.496(10)	0.5

approximants as usual. The results are shown in table 7. Again, the power-law exponents are very close to the expected values, within errors of $2-5 \%$.

Table 8. Biased estimates of the logarithmic indices p for various series. Power-law singularities have been multiplied out where necessary using functions $t_{1}=\left(1-x / x_{c}\right)^{-1 / 2}, t_{2}=\left(1-x / x_{c}\right)$

Series	WC (ET)		SC (HT)	
	Residue	RG prediction	Residue	RG prediction
SC lattice: the critical point biased at $x_{\mathrm{c}}=0.19386(2), \lambda_{\mathrm{c}}^{2}=1.6630$ (3)				
C	0.36(4)	$\frac{1}{3}$	0.8(2)	$\frac{1}{3}$
χM^{2}	0.99(1)	1		
M/m	0.47(8)	$\frac{1}{3}$		
$\chi{ }^{m^{2}}$	no pole found	no pole	-0.02(2)	no pole
$t_{1} M$	0.29(4)	$\frac{1}{3}$		
$t_{2} \chi$	0.39(5)	$\frac{1}{3}$	0.29(5)	$\frac{1}{3}$
$t_{1} m$	-0.15(5)	$-\frac{1}{6}$	-0.143(5)	$-\frac{1}{6}$
BCC lattice: the critical point biased at $x_{\mathrm{c}}=0.14071(8), \lambda_{\mathrm{c}}^{2}=3.157(3)$				
C	0.33(4)	$\frac{1}{3}$	0.8(1)	$\frac{1}{3}$
$X M^{2}$	0.9(1)	1		
M / m	0.4(1)	$\frac{1}{2}$		
$x m^{2}$	no pole found	no pole	-0.02(2)	no pole
$t_{1} M$	0.27(3)	$\frac{1}{3}$		
$t_{2} \chi$	0.34(3)	$\frac{1}{3}$	0.30(4)	$\frac{1}{3}$
$t_{1} m$	-0.13(3)	$-\frac{1}{6}$	-0.14(2)	$-\frac{1}{6}$
FCC latice: the critical point biased at $x_{\mathrm{c}}=0.09206(2), \lambda_{\mathrm{c}}^{2}=7.375(3)$				
C	0.33(4)	$\frac{1}{3}$	1.01(1)	$\frac{1}{3}$
$X M^{2}$	0.85(15)	1		
M / m	0.4(1)	$\frac{1}{2}$		
$x m^{2}$	no pole found	no pole	-0.02(2)	no pole
$t_{1} M$	0.27(4)	$\frac{1}{3}$		
$t_{2} X$	0.32(5)	$\frac{1}{3}$	0.26(8)	$\frac{1}{3}$
$t_{1} m$	-0.17(3)	$-\frac{1}{6}$	-0.15(2)	$-\frac{1}{6}$

3.2. Confluent logarithmic singularities

It is well known that it is virtually impossible to distinguish a logarithmic singularity from a weak power-law singularity by numerical means. The best we can do is to apply various consistency tests, assuming from the start that the power-law exponents are those given by the RG predictions (1.2)-(1.5),

To begin with, there are certain combinations of observables whose leading singularities should be purely logarithmic. For instance, the RG predicts $C \sim|\ln | t\left|\left.\right|^{1 / 2}, \chi M^{2} \sim \ln \right| t \mid$, and $M / m \sim|\ln | t| |^{1 / 2}$. Now if a function $f(x)$ has a logarithmic singularity of the form

$$
\begin{equation*}
f(x) \sim A(x)|\ln | 1-\frac{x}{x_{\mathrm{c}}}| |^{p} \tag{3.2}
\end{equation*}
$$

where $A(x)$ is analytic, then for x near x_{c} we have

$$
\begin{equation*}
\frac{\ln \left(1-x / x_{\mathrm{c}}\right)}{\left(x / x_{\mathrm{c}}\right)} \frac{1}{f} \frac{\mathrm{~d} f}{\mathrm{~d} x} \sim \frac{p}{x-x_{\mathrm{c}}} . \tag{3.3}
\end{equation*}
$$

Thus, given a previous estimate of the critical point x_{c}, we can obtain a biased estimate of the index p by forming a Pade approximants to the series for the left-hand side of equation (3.3). A similar method can be applied to the original observables M, χ and m, once the expected power-law singularities have been 'multiplied out'. The results of such an
analysis are shown in table 9. The estimates of the logarithmic indices p are generally in quite reasonable agreement with the predicted values, at a level of accuracy $10-20 \%$.

Another method of analysis was proposed by Guttmann (1978, 1989), and employed previously by Gaunt et al (1978). We shall apply it to the weak-coupling susceptibility, which is the best-behaved series for this purpose. Assume the series behaves as

$$
\begin{equation*}
\chi(x)=A(x)\left(1-x / x_{\mathrm{c}}\right)^{-q}\left|\ln \left(1-x / x_{\mathrm{c}}\right)\right|^{p} \tag{3.4}
\end{equation*}
$$

where $A(x)$ is analytic near $x=x_{c}$, and the exponent q is known, $q=1$. Again, the analysis begins by eliminating the effect of any antiferromagnetic singularity by performing an Euler transformation as in (3.1). Writing the transformed series as

$$
\begin{equation*}
\chi(y)=\sum_{n} a_{n} y^{n} \tag{3.5}
\end{equation*}
$$

we next calculate the ratios $r_{n}=a_{n} / a_{n-1}$. Then defining another function $f(y)$ by

$$
\begin{equation*}
f(y)=(1-y)^{-q^{*}}|\ln (1-y) / y|^{P^{*}}=\sum_{n} b_{n} y^{n} \tag{3,6}
\end{equation*}
$$

with $q^{*}=1$, we calculate the ratios $r_{n}^{*}=b_{n} / b_{n-1}$. The basic aim is now to compare the behaviour of the ratio r_{n}^{*} for the mimic function $f(x)$ with the behaviour of the r_{n} for a range of values of the parameter p^{*}. The analysis is based upon the following two observations. Firstly, as $n \rightarrow \infty$ the sequence $R_{n}=r_{n} / r_{n}^{*}$ should approach x_{c}^{-1} with zero slope when $p^{*}=p$. To allow for higher-order correction terms, the following extrapolants are calculated:

$$
\begin{equation*}
R_{n}=R_{\infty}+\sum_{i=1}^{N} c_{i} / n^{i} \quad N=1,2,3,4 \tag{3.7}
\end{equation*}
$$

Secondly, the exponent estimates $\Delta_{n}=n\left(R_{n} x_{\mathrm{c}}^{*}-1\right)$ and their extrapolants must simultaneously approach zero as $n \rightarrow \infty$. Some typical extrapolant values for the FCC lattice are shown in table 9 . Choosing the p value which gives the smallest linear extrapolant of Δ_{n}, and 'flattest' extrapolant of R_{n}, we estimate the critical parameters:

$$
\begin{array}{lll}
\text { SC lattice: } & x_{\mathrm{C}}=0.19386(2) & p=0.33(5) \\
\text { BCC lattice: } & x_{\mathrm{c}}=0.14071(8) & p=0.32(4) \\
\text { FCC lattice: } & x_{\mathrm{c}}=0.09206(2) & p=0.32(4) \tag{3.10}
\end{array}
$$

These results are in good agreement with the RG prediction $p=\frac{1}{3}$.

3.3. Critical amplitudes

The renormalization group analysis also provides universal predictions for ratios of the amplitudes of the singular terms at the critical point (Brezin et al 1976). To be specific, suppose a quantity $f(t)$ has singular behaviour

$$
\begin{equation*}
f(t)^{t \rightarrow 0} \sim F^{ \pm}|t|^{-q}|\ln | t| |^{p} \tag{3.11}
\end{equation*}
$$

where $F^{+}\left(F^{-}\right)$is the critical amplitude at high (low) temperature, or strong (weak) coupling, respectively. Then the ratios F^{+} / F^{-}are predicted to take their mean-field values:
specific heat: $\quad A^{+} / A^{-}=\frac{1}{4}$
susceptibility: $\quad C^{+} / C^{-}=2$
energy gap: $\quad f^{+} / f^{-}=1 / \sqrt{2}$.
Table 9. Analysis of the transformed high-temperature susceptibility series for the FCC lattice,

p^{*}	n	R_{n}	Lincar extrapolants $1 / R_{\infty}$	Quadratic extrapolants $1 / R_{\infty}$	$N=3$ extrapolants $1 / R_{\infty}+c_{1} / n$	$N=4$ extrapolants $1 / R_{\infty}+c_{1} / n$	Exponent Δ_{n}	Linear extrapolants of Δ_{n}
0.3	6	0.0924979	0.0914758	0.0919461	$0.092096+0.156 / n$	$0.092134+0.236 / n$	-0.0277583	0.00471864
0.3	7	0.0923728	0.0916288	0.0920134	$0.0921033+0.169 / n$	$0.0921087+0.183 / n$	-0.022943	0.0059486
0.3	8	0.0922922	0091732	0.092043	$0.0920923+0.145 / n$	$0.0920814+0.112 / n$	-0.0192582	0.00653537
0.3	9	0.0922376	0.0918036	0.0920553	$0.0920799+0.115 / n$	$0.0920644+0.0599 / n$	-0.0163568	0.00685455
0.3	10	0.0921992	0.0918548	0.0920599	$0.0920706+0.0882 / n$	$0.0920565+0.0317 / n$	-0.0140137	0.00707435
0.3	11	0.0921712	0.0918922	0.0920611	$0.0920644+0.0686 / n$	$0.0920537+0.0204 / n$	-0.0120791	0.00726731
0.3	12	0.0921503	0.0919203	0.092061	$0.0920607+0.0553 / n$	$0.0920532+0.0182 / n$	-0.0104506	0.00746274
0.317	6	0.0925837	0.0914569	0.0919342	$0.0920892+0.101 / n$	$0.092129+0.185 / n$	-0.0332884	0.000231919
0.317	7	0.0924437	0.0916127	0.0920045	$0.0920984+0.117 / n$	$0.0921052+0.135 / n$	-0.0282963	0.00165597
0.317	8	0.0923524	0.0917181	0.092036	$0.0920886+0.0961 / n$	$0.0920788+0.066 / n$	-0.0244599	0.00239483
0.317	9	0.0922897	0.0917916	0.0920496	$0.0920769+0.0672 / n$	$0.0920623+0.0156 / n$	-0.021 4269	0.00283746
0.317	10	0.092245	0.0918442	0.0920551	$0.092068+0.042 / n$	$0.0920547-0.0114 / n$	-0.0189682	0.00316019
0.317	11	0.0922119	0.0918828	0.0920571	$0.0920622+0.0237 / n$	$0.0920521-0.0216 / n$	-0.016931	0.00344084
0.317	12	0.0921869	0.0919119	0.0920575	$0.0920588+0.0114 / n$	$0.0920519-0.0229 / n$	-0.0152107	0.00371224
0.333	6	0.0926697	0.0914382	0.0919221	$0.0920822+0.045 / n$	$0.092124+0.134 / n$	-0.0388266	-0.00427676
0.333	7	0.0925149	0.0915967	0.0919054	$0.0920934+0.0648 / n$	$0.0921017+0.0865 / n$	-0.0336594	-0.00265599
0.333	8	0.0924128	0.0917044	0.0920289	$0.0920847+0.0464 / n$	$0.0920761+0.02 / n$	-0.0296724	-0.001 76302
0.333	9	0.092342	0.0917796	0.0920439	$0.0920738+0.0194 / n$	0.0920602-0.0289/n	-0.0265082	-0.001 19537
0.333	10	0.0922909	0.0918336	0.0920503	$0.0920655-0.00426 / n$	$0.0920529-0.0546 / n$	-0.0239343	-0.000768415
0.333	11	0.0922528	0.0918734	0.092053	$0.0920601-0.0214 / n$	$0.0920506-0.0638 / n$	-0.021 7947	-0.000 399037
0.333	12	0.0922236	0.0919035	0.092054	0.0920569-0.0327/n	$0.0920505-0.0642 / n$	-0.0199827	-0.000 0507882

Table 9. Continued.

p^{*}	n	R_{n}	Linear extrapolants $1 / R_{\infty}$	Quadratic extrapolants $1 / R_{\infty}$	$\begin{aligned} & N=3 \\ & \text { exirapolants } \\ & 1 / R_{\infty}+c_{1} / n \end{aligned}$	$N=4$ extrapolanks $1 / R_{\infty}+c_{1} / n$	Exponent Δ_{n}	Linear extrapolants of Δ_{n}
0.35	6	0.092756	0.0914197	0.0919099	0.0920751-0.0109/n	$0.0921189+0.0821 / n$	-0.044 3729	-0.00880729
0.35	7	0.0925863	0.0915809	0.0919863	$0.0920883+0.0124 / n$	$0.0920982+0.038 / n$	-0.039 0321	-0.00698722
. 35	8	0.0924734	0.0916907	0.0920217	$0.0920809-0.00341 / n$	$0.0920734-0.0263 / n$	-0.0348953	-0.00593815
0.35	9	0.0923944	0.0917677	0.0920381	$0.0920707-0.0286 / n$	0.092058-0.0735/n	-0.0316007	-0.00524389
0.35	10	0.092337	0.0918231	0.0920455	$0.0920629-0.0507 / n$	0.0920511-0.0979/n	-0.0289118	-0.004 71145
0.35	11	0.0922938	0.0918641	0.0920489	0.0920579-0.0667/n	0.0920491-0.106/n	-0.02667	-0.0042523
0.35	12	0.0922604	0.0918951	0.0920504	0.092 $055-0.0769 / n$	0.0920492-0.106/n	-0.0247664	-0.00382633
0.375	6	0.092886	0.0913925	0,0918913	0.0920643-0.0955/n	$0.0921112+0.00402 / n$	-0.0527066	-0.0156438
0.375	7	0,0926938	0.0915575	0.0919723	0.092080 $-0.0667 / n$	0.0920928-0.035/n	-0.0471086	-0.0135201
0.375	8	0.0925646	0.0916704	0,0920108	0.092075-0.0786/n	0.0920693-0.0959/n	-0.042 7491	-0.0122332
0.375	9	0.0924734	0.0917499	0.0920292	0.092066-0.101/n	0.0920547-0.141/n	-0.0392599	-0.0113461
0.375	10	0.0924064	0.0918074	0.0920381	0.0920589-0.121/n	0.0920484-0.163/n	-0.036 3992	-0.010653
0.375	11	0.0923555	0.09185	0.0920426	0.0920545-0.135/n	0.0920468-0.17/n	-0.034 0045	$-0,0100573$
0.375	12	0.0923159	0.0918825	0.092045	$0.0920521-0.144 / n$	0.0920472-0.168/n	-0.0319635	-0.00951309

Since we have both strong-coupling and weak-coupling series to hand, we can attempt to check these predictions.

Biased estimates of the amplitude ratios can be obtained by the following technique. Assuming that the singular behaviour predicted by RG theory is correct, and an accurate estimate of the critical point is available, one can extrapolate the strong-coupling and weakcoupling series using integrated differential approximants (Guttmann 1989) to estimate the function f at points $\pm t$, equidistant from the critical point on either side. Then

$$
\begin{equation*}
\frac{F^{\dagger}}{F^{-}}=\lim _{t \rightarrow 0} \frac{f(+t)}{f(-t)} \tag{3.15}
\end{equation*}
$$

where $t=1-x / x_{\mathrm{c}}$ for the strong-coupling side, or $t=1-\lambda_{\mathrm{c}} / \lambda$ for the weak-coupling side. Because each quantity varies rapidly near the critical point, it is useful to 'smooth' each of these functions before making the extrapolations, by calculating approximants to the series for $|t|^{q}|\ln | t| |^{-p} f(t)$ rather than $f(t)$ itself.

Specific heat. The behaviour of the specific heat itself, reconstructed from the extrapolation procedure, is shown in figure 1. The ratio $C(+t) / C(-t)$ is graphed as a function of t in figure 2. Near the critical point $(t=0)$, we estimate that
$C= \begin{cases}0.112(6)\left[-\ln \left(1-x^{2} / x_{\mathrm{c}}^{2}\right) /\left(x^{2} / x_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (SC lattice) } \\ 0.101(6)\left[-\ln \left(1-x^{2} / x_{\mathrm{c}}^{2}\right) /\left(x^{2} / x_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (BCC lattice) } \\ 0.092(5)\left[-\ln \left(1-x^{2} / x_{\mathrm{c}}^{2}\right) /\left(x^{2} / x_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (FCC lattice) }\end{cases}$
from the strong-coupling side, or
$C^{\prime}= \begin{cases}0.8866(6)\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (SC lattice) } \\ 0.849(10)\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (BCC lattice) } \\ 0.84(1)\left[-\ln \left(1-\lambda^{2} / \lambda_{c}^{2}\right) /\left(\lambda^{2} / \lambda_{c}^{2}\right)\right]^{1 / 3} & \text { (FCC lattice) }\end{cases}$

Figure 1. The specific heat as a function of coupling x for each of the three lattices.

Figure 2. The ratio of the specific heats at reduced couplings $\pm t$, as a function of t, for each lattice.
from the weak-coupling side. Thus the critical amplitude ratio is found to be

$$
\frac{A^{+}}{A^{-}}=\lim _{t \rightarrow 0} \frac{C(+t)}{C^{\prime}(-t)}= \begin{cases}0.13(1) & \text { (SC lattice) } \tag{3.18}\\ 0.12(1) & \text { (BCC lattice) } \\ 0.11(2) & \text { (FCC lattice) }\end{cases}
$$

these values are a factor of 2 lower than the RG prediction. We remark that the ratio in figure 2 is curving steeply upward as $t \rightarrow 0$, and the error bounds in (3.18) may well be underestimated.

It is worth noting at this point that Ahlers et al (1975) have performed a least-squares fit to experimental data for the specific heat of a system belonging to the same universality class as the present model, and found excellent agreement with the expected amplitude ratio $A^{+} / A^{-}=\frac{1}{4}$. They were able to obtain accurate data at extremely small values of $t,|t| \leqslant 0.001$, whereas our present series extrapolations become highly unreliable at such small t values.

Magnetization. Near the critical point on the weak-coupling side, the magnetization is found to be

$$
M= \begin{cases}0.43(1)\left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)^{1 / 2}\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (SC lattice) } \tag{3.19}\\ 0.42(1)\left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)^{1 / 2}\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (BCC lattice) } \\ 0.42(1)\left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)^{1 / 2}\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (FCC lattice) }\end{cases}
$$

The critical amplitude appears to be universal for all three lattices. In fact, if the magnetization estimates are plotted against the 'reduced' coupling variable λ / λ_{c}, as in figure 3, they lie very nearly on a universal curve at all couplings, obeying an approximate 'law of corresponding states'.

Figure 3. The magnetization M as a function of reduced coupling λ / λ_{c} for each of the three lattices.

Figure 4. The susceptibility χ as a function of reduced coupling x / x_{c} for all three lattices.

Susceptibility. The susceptibility χ (though not χ ') similarly appears to obey a 'law of corresponding states', as seen in figure 4. Near the critical point, it is found to be
$\chi= \begin{cases}0.92(4)\left(1-x / x_{\mathrm{c}}\right)^{-1}\left[-\ln \left(1-x / x_{\mathrm{c}}\right) /\left(x / x_{\mathrm{c}}\right)\right]^{1 / 3} & \text { (SC lattice) } \\ 0.86(5)\left(1-x / x_{\mathrm{c}}\right)^{-1}\left[-\ln \left(1-x / x_{\mathrm{c}}\right) /\left(x / x_{\mathrm{c}}\right)\right]^{1 / 3} & \text { (BCC lattice) } \\ 0.86(6)\left(1-x / x_{\mathrm{c}}\right)^{-1}\left[-\ln \left(1-x / x_{\mathrm{c}}\right) /\left(x / x_{\mathrm{c}}\right)\right]^{1 / 3} & \text { (FCC lattice) }\end{cases}$

Figure 5. The ratio of the susceptibilities at $\pm t$ as a function of t for each lattice.
from the strong-coupling side, and

$$
\chi^{\prime}= \begin{cases}0.15(3)\left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)^{-1}\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (SC lattice) } \tag{3.21}\\ 0.104(8)\left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)^{-1}\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (BCC lattice) } \\ 0.066(6)\left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)^{-1}\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{1 / 3} & \text { (FCC lattice) }\end{cases}
$$

from the weak-coupling side, so that the ratio

$$
\frac{C^{+}}{C^{-}}=\lim _{t \rightarrow 0} \frac{\chi(+t)}{4 \lambda_{c} \chi^{\prime}(-t)}= \begin{cases}2.4(5) & \text { (SC lattice) } \tag{3.22}\\ 2.3(3) & \text { (BCC lattice) } \\ 2.4(4) & \text { (FCC lattice) }\end{cases}
$$

The ratio is curving rapidly downwards as $t \rightarrow 0$ (see figure 5), so that these results appear reasonably consistent with the RG prediction $C^{+} / C^{-}=2$, at a 20% level of accuracy. The amplitude for χ itself appears to be universal, in fact, for these three lattices.

Energy gap. The energy gap also behaves in a nearly universal fashion, as shown in figure 6. Near the critical point, it behaves as

$$
m= \begin{cases}2.05(8)\left(1-x / x_{\mathrm{c}}\right)^{1 / 2}\left[-\ln \left(1-x / x_{\mathrm{c}}\right) /\left(x / x_{\mathrm{c}}\right)\right]^{-1 / 6} & \text { (SC lattice) } \tag{3.23}\\ 2.09(7)\left(1-x / x_{\mathrm{c}}\right)^{1 / 2}\left[-\ln \left(1-x / x_{\mathrm{c}}\right) /\left(x / x_{\mathrm{c}}\right)\right]^{-1 / 6} & \text { (BCC lattice) } \\ 2.11(5)\left(1-x / x_{\mathrm{c}}\right)^{1 / 2}\left[-\ln \left(1-x / x_{\mathrm{c}}\right) /\left(x / x_{\mathrm{c}}\right)\right]^{-1 / 6} & \text { (FCC lattice) }\end{cases}
$$

from the strong-coupling side, and

$$
m^{\prime}= \begin{cases}2.80(2)\left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)^{1 / 2}\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{-1 / 6} & \text { (SC lattice) } \tag{3.24}\\ 3.95(3)\left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)^{1 / 2}\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{-1 / 6} & \text { (BCC lattice) } \\ 6.09(3)\left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)^{1 / 2}\left[-\ln \left(1-\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right) /\left(\lambda^{2} / \lambda_{\mathrm{c}}^{2}\right)\right]^{-1 / 6} & \text { (FCC lattice) }\end{cases}
$$

Figure 6. The energy gap m as a function of reduced coupling x / x_{c} for all three lattices.

Figure 7. The ratio of energy gaps at $\pm \mathrm{r}$, as a function of t for each lattice.
from the weak-coupling side. The amplitude ratio is

$$
\frac{f^{+}}{f^{-}}=\lim _{: \rightarrow 0} \frac{m(+t)}{m^{\prime}(-t) / \lambda_{\mathrm{c}}}= \begin{cases}0.67(3) & \text { (SC lattice) } \tag{3.25}\\ 0.67(3) & \text { (BCC lattice) } \\ 0.67(2) & \text { (FCC lattice) }\end{cases}
$$

Since these ratios are curving upwards as $t \rightarrow 0$ (figure 7), these estimates again seem quite compatible with the RG prediction $f^{+} / f^{-}=1 / \sqrt{2}$, at about a 5% level of accuracy. The energy gap amplitudes themselves appear to be universal for these three lattices.

Figure 8. The product $m^{2} \chi$ as a function of reduced coupling x / x_{c} for all three lattices.

Figure 9. The ratio of $m^{2} \chi$ at $\pm t$, as a function of t for each lattice.

A final test can be obtained by extrapolating the series for $m^{2} \chi$, which is predicted to approach a constant value at the critical point. Figure 8 shows the results for this quantity. Near the critical point,

$$
m^{2} \chi= \begin{cases}3.80(4) & \text { (SC lattice) } \tag{3.26}\\ 3.85(6) & \text { (BCC lattice) } \\ 3.87(4) & \text { (FCC lattice) }\end{cases}
$$

from the strong-coupling side, and

$$
m^{\prime 2} \chi^{\prime}= \begin{cases}1.13(4) & \text { (SC lattice) } \tag{3.27}\\ 1.63(10) & \text { (BCC lattice) } \\ 2.44(4) & \text { (FCC lattice) }\end{cases}
$$

from the weak-coupling side. The amplitude ratio is shown in figure 9 , and at the critical point it is found to be

$$
\lim _{t \rightarrow 0} \frac{m^{2} \chi(+t)}{4 m^{2} \chi^{\prime}(-t) / \lambda_{c}}= \begin{cases}1.08(5) & \text { (SC lattice) } \tag{3.28}\\ 1.05(8) & \text { (BCC lattice) } \\ 1.08(5) & \text { (FCC lattice) }\end{cases}
$$

According to (3.12)-(3.14) this ratio should be exactly 1. The result (3.28) is in fairly good agreement with the prediction, at about a $5-10 \%$ level of accuracy. The results (3.26) are also in good agreement with the combined results (3.23) and (3.20), which provides evidence that the extrapolation procedure is consistent.

4. Conclusions

The results of the series analysis have mostly been consistent with the predictions of renormalization group theory. Firstly, the power-law exponents at the critical point were found to be consistent with the mean field values to within 5% or less. Then, assuming these exponents do take their mean field values, the exponents of the confluent logarithmic terms were found to be consistent with the predicted values at a $10-20 \%$ level of accuracy. And finally, assuming both power laws and logarithms have the predicted exponents, the ratios of the critical amplitudes above and below the critical point were found to approach their expected universal values for the susceptibility and energy gap, within accuracies ranging from 5-20\%.

An exception is the critical amplitude ratio for the specific heat, which disagrees with the predicted value by a factor of two. The ratio is curving sharply upwards near the critical point, however, and the singularity in the specific heat is weak, so we do not place too much weight on this discrepancy.

The results also show a remarkable degree of universality between the three different lattices considered. When graphed against the 'reduced' coupling or 'temperature' variable, the results for the magnetization, susceptibility and energy gap are virtually indistinguishable for all three lattices, not only near the critical point but at all couplings. Even the specific heats are not very different. A 'law of corresponding states' seems to be obeyed very closely in this system.

Acknowledgment

This work forms part of a research project supported by a grant from the Australian Research Council.

References

Brezin E, Le Guillou J C and Zinn-Justin J 1973 Phys. Rev. D 82418
-1976 Phase Transitions and Critical Phenomena vol 6 ed C Domb and M S Green (New York: Academic)
Elliott R J and Wood C 1971 J. Phys., C: Solid State Phys. 42359
Fisher M E and Gaunt D S 1964 Phys. Rev. A 133224
Fradkin E and Susskind L 1978 Phys. Rev. D 172637
Gaunt D S, Sykes M F and McKenzie S 1979 J. Phys. A: Math. Gen. 12871
Green M B, Sneddon L and Stinchcombe R B 1979 J. Phys. A: Math. Gen. 12 L189
Guttmann A J 1978 J. Phys. A: Math. Gen. 11 L103

- 1989 Phase Transitions and Critical Phenomena yol 13 ed C Domb and J Lebowitz (New York: Academic)

He H X, Hamer C J and Oitmaa J 1990 J. Phys. A: Math. Gen. 242863
Jansen K, Montvay I, Münster G, Trappenberg T and Wolff U 1989 Nucl. Phys. B 322698
Larkin A I and Khmel'Nitskii D E 1969 Zh. Eksp. Teor. Fiz. 56 2087; Sov. Phys.-JETP 291123
Moore M A 1970 Phys. Rev. B 12238
Nickel B G 1980 unpublished
Oitmaa J and Coombs G J 1981 J. Phys. C: Solid State Phys. 14143
Oitmaa J and Plischke 1976 J. Phys. C: Solid State Phys. 92093
Oitmaa J, Hamer C J and Zheng W H 1991 J. Phys. A: Math. Gen. 231775
Pfeuty P 1976 J. Phys. C: Solid State Phys. 93993
Pfeuty P and Elliott R J 1971 J. Phys. C: Solid State Phys. 42370
Stinchcombe R B 1972 J. Phys. C: Solid State Phys. 62459
Suzuki M 1976 Prog. Theor. Phys. 561454
Vohwinkel C and Weisz P 1992 Nucl. Phys. B 374647
Wegner F J and Riedel E K 1973 Phys. Rev. B 7248
Yanase A 1977 J. Phys. Soc. Japan 421816
Yanase A, Takeshige Y and Suzuki M 1976 J. Phys. Soc. Japan 411108

[^0]: \dagger E-mail address: w.zheng@unsw.edu.au
 \ddagger E-mail address: otja@newt.phys.unsw.edu,au
 § E-mail address: c.hamer@unsw.edu.au

