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Series expansions for the 3~ transverse Ising model at T = 0 

Zheng Weihongt, J Oitmaaj and C J Hamer3 
School of Physics, The University of New South Wales, Sydney. NSW 2052, Ausualia 

Received 8 June 1994 

Abstract. Both weak-coupling and strong-coupling series expansions we calculated for the 
lsing model in a transverse field at zero temperaNre in thre dimensions. Series are obtained 
for the ground-state energy, the magnetization, the susceptibility, and the energy gaps, on the 
simple cubic, the bodycentred cubic and the face-centred cubic lattices. The analysis of lhe 
critical behaviour is consistent with the behaviour predicted by renormalization p u p  theoly for 
the four-dimensional simple Ising model. There is a remarkable degree of universality between 
all three lattices. 

1. Introduction 

The king model in a transverse field is a simple lattice spin model which describes a number 
of real systems, as well as being of theoretical interest. Its Hamiltonian is 

H = - J S: Sj - l- Sf (1.1) 
(il) i 

where the Sf ,  Sf are quantum spin-i operators at each site i, and the sums run over all 
nearest-neighbour pairs (ij) and over all sites i, respectively. 

The model has been applied to a wide variety of physical systems including order- 
disorder ferroelectrics, induced moment ferromagnets, and co-operative Jahn-Teller systems. 
In most of these applications the operators are, in fact, pseudospins acting on the states of 
two-level systems, and the transverse field describes transitions between these levels. These 
applications, and others, have been discussed by Stinchcombe (1972) and Birgeneau (1972). 

On the theoretical side, it is known that the tIansverse Ising model Hamiltonian in d 
dimensions is the quantum Hamiltonian corresponding to the ordinary Euclidean king model 
in (d + 1) dimensions (Pfeuty 1976, Suzuki 1976, Fradkin and Susskind 1978, Green et a1 
1979), and can be obtained as an anisotropic limit of the logarithm of the transfer matrix 
of the latter model. According to the universality hypothesis, both models should have the 
same critical behaviour. More specifically, the transverse Ising model at zero temperature 
is in an ordered phase ((Sf) # 0) unless r exceeds some critical value rc; and near r = rc 
the critical behaviour of this model as a function of r should be the same as that of the 
four-dimensional Ising model as a function of temperature T. 

Now dimension four is the upper critical dimension for the king model, beyond which 
the critical behaviour is that of mean field theory (for a review, see Brezin et al 1976). 
Precisely at dimension four, the mean-field critical behaviour is modified by confluent 
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logarithmic corrections. Larkin and Khmel'Nitski (1969), followed by Wegner and Riedel 
(1973) and Brezin el a[ (1973) applied renormalization group (RG) theory to show that the 
singular behaviour expected for various thermodynamic quantities near T, is 

specific heat: c - (In If 0113 (1.2) 
susceptibility: x - [t[-'(In (1.3) 
spontaneous magnetization: M - ~ t l ' / z ( l n ~ r l ) 1 / 3  (t 4 o+) (1.4) 
energy gap: in - x-"' - ltl'/z(InJtJ)-'/6 (1.5) 

where t = 1 - TIT, is the reduced temperature variable for the 4D king model, or 
t = 1 - r/ rc for the transverse Ising model in 3D. Our principal interest is to try and 
verify these predictions for the transverse Ising model using series-expansion techniques. 

Previous analyses of the 4 0  king model include a high-temperature expansion for the 
susceptibility on a hypercubic lattice by Fisher and Gaunt (1964). and longer expansions 
for the susceptibility and fouth-field derivative by Gaunt et al (1979). Moore (1970) 
derived expansions for the spin-spin correlation function, but were unable to distinguish any 
logarithmic effect. Baker (1977) analysed the fourth-field derivative and the susceptibility, 
and again saw no evidence of logarithmic correction terms, obtaining critical indices such 
that 

2A - dv - y -0.302 f 0.038 (1.6) 
in violation of the hyperscaling relation predicted by RG theory 

ZA - du - y = O .  (1.7) 
Gaunt et al (1979), in their more extensive study, found, on the contrary, that their results 
were entirely consistent with the RG predictions. 

More recently, Vohwinkel and Weisz (1992) have carried out low-temperature 
expansions of the magnetization, susceptibilities and second moment. They find that their 
extrapolated series agree well with Monte Carlo data of Jansen et  a1 (1989), and also with 
solutions of the renormalization group equations in the scaling region. They take these 
results as support for the conclusion that the lattice 5b4 theory in four dimensions, which 
describes the model in the scaling region, has only a trivial continuum limit. 

The transverse king model at T = 0 in three dimensions has also been the subject of 
several studies. Pfeuty and Elliott (197 1) calculated both weak-coupling and strong-coupling 
series for the model, and showed in fact that the critical behaviour was like that of the 4D 
Ising model. Yanase, Takeshige and Suzuki (1976) used high-temperature expansions for 
the correlation function and susceptibility to extrapolate to the T = 0 limit, and reached a 
similar conclusion. Oitmaa and Plischke (1976) used a similar technique for the fluctuation 
in the long-range order, but were unable to see any crossover to d = 4 critical behaviour 
at T = 0. Oitmaa and Coombs (1981) carried out a high-temperature expansion of the 
susceptibility for the case of general spin S, and this time did see the expected crossover 
behaviour. 

In this paper we calculate both weak-coupling and strong-coupling series expansions for 
the spin-; transverse Ising model at T = 0, involving the ground-state energy per site, the 
susceptibility, the energy gap, and the magnetization. The lattices considered are the simple 
cubic (Sc), the body-centred cubic (BCC) and face-centred cubic (FCC) lattices. Estimates are 
given of the critical points, critical indices, confluent logarithmic corrections, and universal 
amplitude ratios at the critical point. 

In section 2 of the paper we briefly summarize the method used to obtain the perturbation 
series. In section 3 the analysis is carried out, and in section 4 our conclusions are presented. 



Series expansions for king model 5421 

2. Series expansions 

The strong-coupling (SC) form, alternatively called the ‘high-temperature’ (HT) form, of this 
Hamiltonian will be taken as 

H = - C  of - x 1 u:u,? - h a: (2.1) 
i ( ! I )  i 

where ( i j )  denotes nearest-neighbour pairs of sites on a three-dimensional spatial lattice, 
the ui are Pauli matrices acting on a two-state spin variable at each site, and x ,  which 
corresponds to the inverse temperature in the 4D Euclidean formulation, is the sC series- 
expansion parameter. The magnetic field h is introduced in order to calculate the 
magnetization and the susceptibility. If x is very large, the model can be described by 
a weak-coupling (WC) or ‘low-temperature’ (LT) form 

where the two Hamiltonians are related by 

H ( x )  = H’(h)/h x = 1/(4h) h = h’/(2h). (2.3) 
In each case the Hamiltonian without magnetic field (i.e. with h = 0) has the form 

H = Ho + tV  (2.4) 
where f = x for the case of strong-coupling expansion, or f = A for the weak-coupling 
expansion. The term HO is taken as the unperturbed Hamiltonian, and the term V then 
acts as a perturbation, which flips the spin on nearest-neighbour pairs of sites (ij) for the 
strong-coupling expansion, or flips the spin on sites a’ for the weak-coupling expansion. 

We have derived long perturbation expansions in the parameter I, using a linked cluster 
expansion method due to Nickel (1980). The method has been explained in some detail in He 
et al(1990), where the same model was treated in two space dimensions, and the discussion 
will not be repeated here. Both weak-coupling and strong-coupling series expansions have 
been calculated for the ground-state energy per site Eo/N (E$N),  the susceptibility 

and the enerm gap m (m’), and a weak-coupling expansion has been obtained for the 
magnetization M’ = -(l/N)aE;/ah‘l,,=,. From equations (2.3), the relations between the 
strong-coupling and weak-coupling observables, respectively, are 

Eo(x) = EA(A)/h (2.6) 
x ( x )  = 4Ax’(k) (2.7) 
m ( x )  = m’(h)/h (2.8) 

with x = 1/(4h). 
From the ground-state energy, one can define the ‘specific heats’ 

x2 a*Eo A a2E; 
or C’(h) = 

N ah2 
C ( x )  = 

N ax2 
which then obey 

C(X) = C‘(h). (2.10) 

The calculation of the ground-state energy and its derivatives involves a list of connected 
clusters up to a certain number of sites (vertices) or bonds (edges), while for the calculation 
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Table 1. The number of clusters generated for each lattice. Here nu is the number of sites, nb 
is the number of bonds (edges). 

Ground-Swte energy Energy gap 

Laitice Expansion Order No of clusters Order No of clusters 

SC sc (KI) n b =  14 4309 n b =  13 5652 
sc wc (LO nu= 12 12280 n u =  I I  6228 
B c c  sc n b =  14 6110 n b = 1 3  1322 
ECC wc (LT) nu= 12 49021 n u =  I I  16491 
FCC sc (W nb=12  1116 n b =  I 1  1114 
Fcc wc (Lr) n v = 9  1215 I W = l  4 9 l  

of the energy gap, both connected and disconnected clusters, including one or more isolated 
vertices, are needed. Table 1 gives the number of clusters generated for each lattice. The 
calculated series are listed in tables 2 and 3. Previously, Pfeuty and Elliott (1971) obtained 
a weak-coupling series for the magnetization and a strong-coupling series for the energy 
gap on the sc lattice up to order 3, while strong-coupling series up to order 7 for the 
susceptibility on all three lattices were obtained by Yanase et a1 (1976). Our results agree 
with these earlier calculations, and add nine new terms for the magnetization series, ten 
new terms for the energy gap series, and seven new terms for the susceptibility (five in the 
case of the FCC lattice). The remaining series are new, as far as we are aware. 

3. Series analysis 

The analysis of these perturbation series was carried out in stages, as follows 

3.1. Power-law singularities 

To begin with, the series were analysed using standard Dlog Pad6 approximant and confluent 
differential approximant methods (Guttmann 1989), to estimate the critical points and 
the 'effective' power-law exponents, ignoring for the moment the expected logarithmic 
corrections. The best behaved series are those for the strong-coupling energy gap: results 
from [N/M] Dlog Pad6 approximants to these series are given in table 4. From this table, 
we estimate that the critical point lies at x, = [0.19406(6), 0.14084(8), 0.09215(7)], 
respectively, for the [sc, BCC, FCC] lattices. In table 5 the Dlog Pad6 estimates of the 
critical parameters obtained from all the various series are listed, where the biased estimates 
were calculated using the critical point values listed above. 

It can be seen from table 5 that the 'effective' exponent values for y are a little greater 
than 1, for v are a little greater than 0.5, for p are around 0.42-0.43, and for a are small 
and uncertain. These values are quite similar to earlier estimates for the 4D Ising model 
(Moore 1970, Gaunt et al 1979) and the transverse king model (Pfeuty and Elliott 1971). 
They also appear qualitatively consistent, as least, with the RG predictions (1.2H1.5). 

Now there are certain combinations of the observables whose leading singularities should 
be purely power-behaved, according to (1.2)-(1.5). For instance, one expects M/C - It l ' lz, 

X / M  - ltl-3/2, x / C  - ltl-', m2C - It[, and mZX -constant. To analyse the series for 
these combinations, we firstly eliminate the effect of any antiferromagnetic singularity by 
performing an Euler transformation 

y = Zx/(l 4- x / x : ,  (3.1) 
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Table 2. Strong-coupling (high-tempemure) series in x for the ground-state energy per site 
E o I N .  the susceptibility x .  and the energy gap m of the transverse king model. Coefficients of 
I" are listed 

X m 

sc lattice 
0 -1 1 2 
1 0  6 -6 
2 -7.500000000 O O O X I O - ~  3.225 000000 OOOx 10' -6.OOOWOOW000 
3 0.000000000000 
4 -1.359 375000 WO 
5 0.000000000W0 
6 -9.433 593750000 
7 0.000000000000 
8 -9.680401611328~10~ 
9 0.000000000000 
IO -1.241 0~1419525x10~ 
11 o . o w ~ o o 0 0 o o o  
12 -1.828 322336 101 x10' 
13 0,000000000000 
14 -2.959553663348~10~ 
BCC lattice 
0 -1 
1 0  
2 -1,000 000000000 
3 o.mmwoo00 
4 -4.562500000000 
5 0.000000000000 
6 -5.8046875000Wx IO' 

7 0.000000000000 
8 - 1.133 810546 875x IO' 
9 0.W0000000000 
IO -2.768589859772~10' 
I I  o.oooooowoow 
12 -7.759160598470~10~ 
13 0.000000000000 
14 -2.388247818341x107 
Fcc lattice 
0 -1 
I O  
2 - 1.5000W000000 
3 -3.0000W000000 
4 - 1.228 125 OOOOOOx IO' 
5 -6.181500000000x10L 
6 -3.638203125000~10~ 
7 -2.367703 1250Wx103 
8 - 1.657 379077 148x10' 
9 -1.225 060279541 x IOs 

10 -9.447149492455~10~ 
I1 -7.536782435456~10~ 
12 -6.182305 303681 x107 

1.725 000000 OOOx IO2 
9.080468 750000~  IO2 
4.775 895833333x10' 
2.496 107682292x10" 
1.304 100 1 3 8 8 8 9 ~ 1 0 ~  
6.791 495 855711 xlOs 
3.536 163 533 925 x IO6 
1.831669 1 8 8 1 9 7 ~ 1 0 ~  
9.548768040 1 18xlO7 
4.955 398 251 608x IOs 
2.571415 145418r109 
1.333 I49 282698~  10'O 

1 
8 
5.900 000 000 000 x IO' 
4 . 3 4 0 0 0 0 0 0 0 ~ ~  lo2 
3.143 145 833333xlb 
2.274983 333 333x IO' 
1.636964 299 769x IO5 
1.177594879823~ IO6 
8.445830945366~10~ 
6.056641 I48 835x IO7 
4.335455001221~10~ 
3.103141 1 1 2 8 2 6 ~ 1 0 ~  
2.218441771801~10~~ 
1.585878065228~10" 
1.132723 493 755x 10'2 

I 
12 
1.365OOOOOOOOOx IO2 
1.527 000000 WOx IO3 
1.694290625000~10' 
1.870950833333~10~ 
2.059 663006076~ IO6 
2.26254O 374913~  IO7 
2.481482 155913x108 
2.718335 268 007x 109 
2.974977 513 949x IOro 
3.253 379 986588~  IO" 
3.555589413812~10'~ 

- 1 . 5 0 0 ~ 0 0 0 0 0 0 0 ~ 1 0 ~  
-4.650 000 000 00Ox 10' 
-I.725000000000xl@ 
-6.316 171875000x1@ 
-2.659 189453125x16 
-1.060Z578W707x 10' 
-4.735 682995 605x lo' 
-1.983770 115700~  lo5 
-9.167 337492 285x lo5 
-3.967 955 605 458x lo6 
-1.874 254024 879x lo7 

2 
-8 
-1.200000000000x10~ 
-4.200000M1oOM)x1O1 
-1.14O000000000x102 
-8.872500 OOOOOOx IO2 
-4.505250 OOOOOOx IOJ 
-2.595 1 SO WO OOOx IO4 
-1.435225275879~10~ 
-8.772 396 340942~  los 
-5.096307 1 7 8 7 1 9 ~ 1 0 ~  
-3,224563 47O224xlO7 
-1,934986229311 x108 
- 1.252095 780670~  IO9 

2 
-12 
-3.000000000000x IOL 
-1.410000000000x10~ 
-9.825 000 000 000x IOz 
-7.336 1250000Wx103 
-5.922 728 906 250x IO' 
-5.016284003906~ IOs 
-4.401691 3 7 5 1 2 2 ~ 1 0 ~  
-3,965 104240860x107 
-3.646206 044064~  IO8 
-3.408623 1 0 5 4 5 6 ~ 1 0 ~  

where xf is an estimate of the exact critical point x,. Then Dlog Pad6 approximants 
and confluent differential approximants to the transformed series were calculated. The 
results obtained are shown in table 6 (where the preferred critical points used in the 
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Table 3. We3k-coupling (low-temperature) series in i2 for the ground.state energy per site 
EkIN. the magnetization M', the susceptibilily x', and lhe energy gap m of the trnnsveise king 
model. Coefficients of (A')" are listed. . .  

n EbIN M' X' m' 

0 -$ .: 0 3 

- 4  1 -4 -4 n 

sc lanice 

2 

2 -7.4014074074O7~lO~~ 

4 -1.911 356220586~10-~ 
5 -2164811980306~10-~ 
6 -1.796 353 660384~  
7 -2.946525630590~10~~ 
8 -2.296328263288~10-~ 
9 -4.693484241 776x 

10 -3.887 742 149 81 I x IOv7  
I1  -9.343649339950~10-~ 

3 -4.703 115814U7X10-'1 
-2.518518518519xIo'~ 
-7,334621 091 23Sx 10.) 
-3. I33 155 006 365 Y IO-? 
-1.235233224717~ 
-6.177842806839~ 
-2.790562317 4 1 4 ~  IO-' 
-1,452 183554366~ 
-7.021368 199928~10-~  

-1.907 194514459~10-~ 
-3.773 175 616 5 1 7 ~  10-5 

5.965432098765~ 
3.714 552864062x10" 
2440762229285~ 10.' 
1.472 173854186~ IOm2 
9.346087036334~ 
5.658413 1 1 9 W 0 ~ 1 0 - ~  
3.516623 255080~ 
2.124781 376080% IO-' 
1.308667 686017~1O-~  
7.906721 101 787x10-4 

2.370370370370~ 10-1 
-4.193768371 546x10-1 

4.872528226916~10-~ 
-6.979931 014 337x IO-! 

1 XO570272574 
-1.510053596210 

2.343670970861 
-3.731 688 168207 

6.054197893638 

12 -7.293 583 ymm x 10-8 -1.039 438 213 9 7 7 ~  10-5 4.836 289 875 998% 10-4 

BCC lattice 
0 -I 1 0 4 

1 -4 -& 3!2 - 2  
2 -2.232 142857 143 x -6.776 147959 184x 1.224262026239~ 10-l 3.687 169 312 t69x IO-? 
3 -5.580357 142857~  I O +  
4 -1.957231 424507% 
5 -I .u)7665 353680~  
6 -4.5499481 4 8 4 4 0 5 ~ 1 0 - ~  
7 -4.024063 8 7 5 2 8 2 ~ 1 0 - ~  
8 -1.645 418348431 Y 

9 -1.943 867680373~ 
10 -7.518643482234~10'~~' 

-9.992825255 102x 

-4.88634051.6567~10-~ 
-I 2628259W862x IO+ 

-8.215758585917~10'~ 
-2.1 12953648 144x10-' 
-5,908769 768623 X ~ O - ~  

-2 .3~041  M I ~ ~ ~ X I O - '  

-3.019483214887x10-~ 

3.860804254738~ 10-3 
1.335770380wOx 
4.262910657885~ 
I .4 12 688 250 449x IO-' 

1.465 460 360 330x 
4.669547 549564~ 
1,507440176516~10~~ 

4499583283742~ 10-5 

-5.221722691 1 3 4 ~ 1 0 - ~  

-1.530836939034~10-~ 
2.375 114717mx 10-2 

- 6 . ~ 0  603 374 835 Y 10-3 

~ . ~ 9 2 6 3 9 7 4 9 8 2 ~ 1 a - 3  

9.459937 M14643x 

4.263687933437~ 
-2.968 204 985 957x 

1 1  -1.089 495959 15Ox IO-!" -1,588701 W2712x IO@ 4.802 569 17381 1 x 

12 -3.%9533809196X10~1t -4.S21500817766X10-9 1.542268523379~10~~ 

Fcc lattice 
0 - 4  f 0 6 

I - A  -25 l& -A 
2 -4.208754208754~ IOF4 -1.12871 I 355 984X IO-) 1.392 483 141 794X -1.269360269360~ IO-' 
3 -1,376347 651 MX)r I0-I -8.321 204142 688 x -8.603 48401 I 31 Zx IO" 

4 -6.674358915 275x -7.355 853.703 436x 2.865 270 148995~ IO-' -7.091 996447689~10-~ 
5 -4 .181512501399~10~~ -7.177108434326~10-' 4.013135029368~10-~ -6.983@33710967~10-' 
6 -3.079 US 652 626x IO-9 -7.45691 7 782 882x 5.584 520083 258x IO-' -4.427 236 297 1 0 2 ~  

8 -2.101 301991 0 6 7 ~ 1 0 - ~ I  -8,964144028677~10-'~ 1.%4268397556~10-* 
9 -1,942081 382 111 Y I O - ~ ~  -1.023260133901 x 1.463661 247996~ 

u)21212 801 81 4x I Oe4 

7 -2.40742207~250~ to-tu -8.043n7090472~10-9 7121 536061 073x10-8 

biased estimates are obtained from the later analysis). It can be seen that the critical 
exponent estimates (residues) for the weak-coupling series are reasonably consistent with 
the expected values, to within an accuracy of 5% or so. The series for m2x shows 
no evidence of singular behaviour. The strong-coupling series are not so well behaved, 
however. 

A further test of the power-law exponents can be made by dividing out the expected 
logarithmic corrections. Assuming the critical point is known, each series can be multiplied 
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Table 4. Dlog Pad6 approximants to the strong-coupling (HT) energy gap series. An asterisk 
denotes a defective approximant. 

N P " N  - 11 I N I N 1  W I N  + I1 
Pole (residue) Pole (residue) Pole (residue) 

sc lanice 
2 
3 
4 
5 
6 
BCC lanice 
2 
3 
4 
5 
6 
Fcc lattice 
2 
3 
4 
5 

0.196 152(0.577350) 
0.194 192(0.552952) 
0.194 480(0.557 85 I )  
0.194 101(0.547781) 
0.194061(0.546230) 

0.141 694(0.564296) 
0.141 825(0.564778)' 
0.141 146(0.555995) 
0.140848(0.545 349) 
0.140 803(0.543 097) 

0.092 76X0.564 986) 
0.092 129(0.543978) 
0.092 173(O.S46 258) 
0.091 979(0.521730)* 

O.I96081(0.576715) 
0.194 625(0.560522) 
0.194 049(0.545 899) 
0.194 078(0.546916) 
0.194094(0.547430)' 

0.141 588(0.563011) 
0.140 036(0.504 448)' 
0.140 869(0.546289) 
0.140905(0.547 443)' 
0. I40 762(0.540 309)' 

0.092492(0.558 737) 
0.092 190(0.547238) 
0.092 I 15(0.541807)' 
0.092082(0.538216)' 

0.194 825(0.563611) 
0.196 827(0.522489)* 
0.194 107(0,S48016) 
0.194063(0.546 329) 

0.141 345(0.559076) 
0.140 932(O.S48 7 12) 
0.140 840(0.544968) 
0.140777(0.541366)' 

0,092551(0.560040)' 
0.092 lM(0.545 699) 
0.091 883(0.499527)* 

Table 5. Estimaes of singularity panmeters for the second-order phase transitions, obtained by 
Dlog Pad6 approximans to the series listed in table 2 and 3, Both biased (b) and unbiased (ub) 
estimates are listed. 

wc (LT) SC (HT) 

Series Pole Residue Pole Residue 

ub b ub b 

sc lattice: the critical point biased at .rc = 0.19406(6), 1: = 1.6596(10) 

M A: = 1.662(5) 0 = 0.43(2) 0.425(7) 
x A: = 1.67(1) y = 1.17(6) IrIl(5) xc =O.l940(4) y = 1.08(2) 1.086(8) 
m A: = 1.66(4) Y =0.5(1) 0.555(10) xc =0.19406(6) U =0.547(2) 0.546(2) 
BCC lanice: the critical point biased 1 .re = 0.14084(8). A: = 3.151(4) 

EA A: = 3.151(4) ,6 =0.426(7) 0.428(6) 
x A: =3.16(1) y = 1.14(6) 1.09(5) xc =0.1408(1) y = 1.08(1) 1.084(10) 
m A: = 3.1(3) Y = 0.5(1) 0.543(6) xc = 0.14084(8) U = 0.542(6) 0.545(4) 
 cc lattice: the critical point biased J1 xf = 0.092 15(7). A: = 7.36(1) 
C A: = 7.8(10) a =0.13(3) 0.08(3) xc =0.0937(6) n =0.3(2) 0.23(15) 
M i t  = 7.36(4) B = 0,42(?) 0.428(7) 
X A: =7.41(4) y = 1.16(3) 1 . W )  x. =0.0921(1) y =  1.08(2) 1.084(10) 
m A i  = 7.38(2) U = 0.56(1) O.SSS(8) xc =0.09215(7) Y = 0.545(10) 0.545(5) 

Specific heat: C - (x ,  - .z)--, 
Magnetization: M - ( L ~  - x ) p .  
Susceptibility: - (xc - x)-u, 
Energy gap: m - ( x ~  -I)", 

C A: = 1.72(5) =0.14(3) 0.07(4) x: =0.040(3) a =0.3(2) 0.2(1) 

C A: = 3.23(8) a = 0.12(4) 0.07(2) x: = O.MI(1) (I =0.3(2) 0.2(1) 

by another series which cancels out the logarithmic correction term listed in (1.2)-(1.5), 
and the resultant series can be analysed for power-law singularities using Dlog Pad€ 
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lhble 6. Estimates of singula& parametas obtained by Dlog Pad6 approximan& and wntluent 
different differential approximan& to selected combinations of the series listed in tables 2 and 3. 
Bath biased @) and unbiased (ub) estinutes are listed. 

wc (LT) sc (HT) 
~ 

Series Pole Residue Pole Residue 

ub b ub b 

sc lattice: the critical point biased at x, =0.19386(2), A: = 1.6630(3) 
M/C A$ I 1.665(3) 0.54(2) 0.52(2) 
x / M  A: = 1.664(5) -1.57(5) -1.55(4) 
x / C  A: = l.664(10) -1.04(5) -1.03(4) x, =0.193(4) -0.7(3)' -0.9(1) 
m'C A: = 1.66(4) 1.0(1) 1.02(3) xc = 0.193(3) 0.7(4)2 LO(1)  

BCC lattice: the critical point biased at x E  = 0.14071(8), A: = 3,157(3) 
M / C  A: =3.161(5) 0.53(3) 0.52(2) 
XIM f =3.159(5) -1.56(4) -1.54(3) 
x / C  e =3.161(4) -1.043) -l.O2(2) xc = 0.14(1) -0.7(2)' -0.9(1) 
mZC = 3.16(2) l.OO(5) I.OOZ(5) x c  = 0.14(1) 0.8(3)' 1.0(1) 
m2x no pole found x, = 0.147(4) O.OI(1) 0.003(3) 
F N ~  Iltice: the critical point biased Y xc = 0.09206(2). A: = 7.375(3) 
M / C  A: = 7.39(2) 0.54(3) 0.54(2) 
X I M  A: =7.38(1) -1.56(4) -1.53(4) 

A2-737 -1.02(2) -I.O2(l) x c  = O.O9l6(10) -0.7(2)' -0.8(2) 
m2C - 7.386) ' @) 1.02(4) 1.02f.2) x, = 0.0915(10) 0.7(2)' 1.0(1) 
m2x no pole found x, = 0.095(4) O.Ol(1)  0.004(4) 

a All estimates defective. 

m'x no pole found X C  = 0.20(1) O.OI(1) 0.005(5) 

Table 7. Biased estimates of power-law exponents for the series listed in tables 2 and 3, with 
the expected logdlhmic corrections cancelled out using multiplier functions t l  = [-ln(1 - 
x l x c ~ l ~ x l x c ~ l - ~ ~ ,  12 = 1- - ~ I X C ) / ( ~ / ~ ~ ) l ~ ' ~ .  

~ _ _ _ _ _ ~  

wc (LT) sc (wr) 

Series Residue RG predictton Residue RG prediction 

sc lanice: the critical point biased at xc = 0.19386(2), A: = 1.6630(3) 
f! C no Dole found no pole -O.I(l) 
t l  M 
I I  x 

0.52(2) 
-1.03(2) 

0.5 
- 1  -0.99(1) 

h m  0.W I) 0.5 0.496(10) 
BCC lanice: the critical point biased at x. = 0.14071(8), A: = 3.157(3) 
LIC no pole found no pole -0.15(10) 
t i  M 0.52(2) 0.5 
11 x - 1.01 (2) -1 -0.99(2) 
t2m 0.50(1) 0.5 OSO(1) 

FCC lanice: the critical point biased at xc = 0.09206(2), A: = 7.375(3) 
tl c no pole found no pole -0.15(10) 

11 x --1.01(1) -1 -0.98(2) 
hm 0.5ofl) 0.5 0.496(10) 

flM 0.53(2) 0.5 

no pole 

- 1  
0.5 

no pole 

-1 
0.5 

no pole 

- I  
0.5 

approximants as usual. The results are shown in table 7. Again, the power-law exponents 
are very close to the expected values. within errors of 2-5%. 
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Table 8. Biased estimates of the logarithmic indices p for various series. Power-law singularities 
have been multiplied out where necessary using functions f i  = ( I  -X /&) - ' /~ ,  12 = (I - x / x . )  

wc (rr) sc 
Series Residue RC prediction Residue RG prediction 

sc lattice: the critical point biased at x, =0.19386(2), A,? = 1.6630(31 
c 
X M 2  

0.36(4) 
0.99(1) 

I 
J 
I 

1 
0.8(2) 3 

.. . .  

M l m  0.47(8) 4 
ti M 0.29(4) 4 
t2 x 0.39(5) 5 0.2915) 5 
f ~ m  -0.15(5) - f ,  -0.143(5) - a  

x m2 no pole found no pole -O.OZ(Z) no pole 

I I 

I 

ECC lattice: the critical point biased at x E  = 0.14071(8), A: = 3.157(3) 
C 
x M2 

0.33(4) 
0.9( 1) 

I 
5 
I 

0.8(1) 3 

I 
M / m  0411 z 
xm2 
fi M 0.27(3) J 
12 x 0.34(3) B 0.30(4) f 
f im -0.13(3) - a  -0.14(2) - 6  

C 0.33(4) f I.Ol(1) 5 
x M2 0.8% 15) 1 

Mlm 0.4(1) 1 
DO pole found no pole -0.02(2) no pole Xm2 
0.27(4) f l  M 

12 x 0.3745) 
f i m  -0.17(3) -T  

no pole found no pole -0.02(2) no pole 
I 

I 

FCC lattice: the critical point biased at .re = 0.09206(2), A: = 7.375(3) 
I 

I 

t 0.26(8) 
-0.15(2) - a  v 

3.2. Confluent logarithmic singularities 

It is well known that it is virtually impossible to distinguish a logarithmic singularity from 
a weak power-law singularity by numerical means. The best we can do is io apply various 
consistency tests, assuming from the start that the power-law exponents are those given by 
the RG predictions (1.2)-(1.5), 

To begin with, there are certain combinations of observables whose leading singularities 
should be purely logarithmic. For instance, the RG predicts C - Iln ltIl1/', x M Z  -In Itl, 
and M / m  - [In lr111/2. Now if a function f ( x )  has a logarithmic singularity of the form 

f ( x )  - A ( x )  In 1 - - I I =:lP 
where A ( x )  is analytic, then for x near x, we have 

In(1 - x / x c )  1 df p _- N - 
( X I X C . )  f dx x - x c  

(3.2) 

(3.3) 

Thus, given a previous estimate of the critical point x,, we can obtain a biased estimate of 
the index p by forming a Pad6 approximants to the series for the left-hand side of equation 
(3.3). A similar method can be applied to the original observables M, x and m, once 
the expected power-law singularities have been 'multiplied out'. The results of such an 
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analysis are shown in table 9. The estimates of the logarithmic indices p are generally in 
quite reasonable agreement with the predicted values, at a level of accuracy 1&20%. 

Another method of analysis was proposed by Gunmann (1978, 1989). and employed 
previously by Gaunt et al (1978). We shall apply it to the weak-coupling susceptibility, 
which is the best-behaved series for this purpose. Assume the series behaves as 

(3.4) 
where A(x) is analytic near x = xc, and the exponent q is known, q = 1. Again, the 
analysis begins by eliminating the effect of any antiferromagnetic singularity by performing 
an Euler transformation as in (3.1). Writing the transformed series as 

x ( x )  = A(x)(l -x/x.)-411n(l - x / x c ) l p  

we next calculate the ratios r,, = an/&,. Then defining another function f (y) by 

f ( y )  = (1 -YF '*IW~ - Y ) / Y ~ "  = x b n y "  (3.6) 
n 

with q* = 1, we calculate the ratios r,* = bJb,,-,. The basic aim is now to compare 
the behaviour of the ratio r,' for the mimic function f ( x )  with the behaviour of the r ,  
for a range of values of the parameter p'. The analysis is based upon the following two 
observations. Firstly, as n 00 the sequence R, = r,,/r; should approach x;' with zero 
slope when p' = p .  To allow for higher-order correction terms, the following extrapolants 
are calculated: 

N 

R, = R, + c;/n' N = 1,2 ,3 ,4 .  (3.7) 
i = I  

Secondly, the exponent estimates An = n(R& - 1) and their extrapolants must 
simultaneously approach zero as n + 00. Some typical extrapolant values for the FCC lattice 
are shown i n  table 9. Choosing the p value which gives the smallest linear extrapolant of 
An, and 'flattest' extrapolant of R,, we estimate the critical parameters: 

sc lattice: x, = 0.19386(2) p = 0.33(5) 
BCC lattice: xc = 0.14071(8) p = 0.32(4) 
FCC lattice: xc = 0.09206(2) p = 0.32(4) 

(3.8) 
(3.9) 

(3.10) 

These results are in good agreement with the RG prediction p = f 

3.3. Critical amplitudes 

The renormalization group analysis also provides universal predictions for ratios of the 
amplitudes of the singular terms at the critical point (Brezin et al 1976). To be specific. 
suppose a quantity f ( t )  has singular behaviour 

f(t)r;"'~*:ltl-q11n lrljp (3.11) 

where F + ( F - )  is the critical amplitude at high (low) temperature, or strong (weak) coupling, 
respectively. Then the ratios F+/ F -  are predicted to take their mean-field values: 

specific heat: AC/A- = 1 4 

susceptibility: Cf/C- = 2 
(3.12) 
(3.13) 

energy gap: f+/f- = I /&.  (3.14) 
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Since we have both strong-coupling and weak-coupling series to hand, we can attempt to 
check these predictions. 

Biased estimates of the amplitude ratios can be obtained by the following technique. 
Assuming that the singular behaviour predicted by RG theory is correct, and an accurate 
estimate of the critical point is available, one can extrapolate the strong-coupling and weak- 
coupling series using integrated differential approximants (Guttmann 1989) to estimate the 
function f at points r t t ,  equidistant from the critical point on either side. Then 

f (+U lim - F+ 
F- r - o f ( - t )  
-=  (3.15) 

where t = 1 - x / x ,  for the strong-coupling side, or t = 1 - for the weak-coupling 
side. Because each quantity varies rapidly near the critical point. it is useful to 'smooth' 
each of these functions before making the extrapolations, by calculating approximants to 
the series for ltl*lln I t l l - P f ( t )  rather than f ( t )  itself. 

Specifrc heat. The behaviour of the specific heat itself, reconstructed from the extrapolation 
procedure, is shown in figure 1. The ratio C(tf)/C(-t)  is graphed as a function o f t  in 
figure 2. Near the critical point (f = 0). we estimate that 

0.112(6)[-ln(l - x 2 / x : ) / ( x  2 / x c ) ]  2 'I3 

0.101(6)[-ln(l -x'/x,")/(x 2 / x c ) ]  2 (BCC lattice) (3.16) 

0.092(5)[- In(1 - x2/x,")/(x 2 / x , ) ]  2 

0.8866(6)[- In (I - A 2 / A t ) / ( k  2 /Ac)] * 

0.84(1)1- In (1 - A2/Af)/(A 2 /Ac)] 2 113 

(sc lattice) 

(FCC lattice) 

(SC lattice) 

(BCC lattice) 

(FCC lattice) 

from the strong-coupling side, or 

0.849(10)[ - In (1 - A2/A: ) / (A2 /A: ) ]113  (3.17) 

" 

0 0.1 0.2 O.3 Figure 1. The specific heat as a function of 
X coupling x for each of the three lattices. 
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t 

Figure 2. The ratio of the specific heats at 
reduced couplings 3s. 3s a function of I ,  for 
each lauice. 

from the weak-coupling side. Thus the critical amplitude ratio is found to be 

0.13(1) (sc lattice) 

0.11 (2) (FCC lattice) 
0.12(1) (BCC lattice) (3.18) A+ -=  

these values are a factor of 2 lower than the RG prediction. We remark that the ratio in  
figure 2 is curving steeply upward as t + 0, and the error bounds in (3.18) may well be 
underestimated. 

It is worth noting at this point that Ahlers et al (1975) have performed a least-squares 
fit to experimental data for the specific heat of a system belonging to the same universality 
class as the present model, and found excellent agreement with the expected amplitude 
ratio A + / A -  = $. They were able to obtain accurate data at extremely small values of 
t ,  It1 < 0.001, whereas our present series extrapolations become highly unreliable at such 
small t values. 

Magnetization. 
found to be 

Near the critical point on the we&-coupling side, the magnetization is 

0.43(1)(1 - A'/A:)''*[- In (1 - A2/b:) / (A 2 /Ac)] * ' I3  

0.42(1)(1-h 2 /Ac) 2 1/2 [ - In( l  -h2/h:)/(h / kc ) ]  ' I3  

0.42(1)(1 - h 2 /hc)  2 ' /2 [- ln (1  - h*/h:)/(h /Ac)] 

(sc lattice) 

(BCC lattice) 

(FCC lattice). 

(3.19) 

The critical amplitude appears to be universal for all three lattices. In fact, if the 
magnetization estimates are plotted against the 'reduced' coupling variable h/hc,  as in 
figure 3, they lie very nearly on a universal curve at all couplings, obeying an approximate 
'law of corresponding states'. 
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20- ~ , I I . , , I , i .  , * I , a I , - 
. . FCC 
: BCC 
: sc 

. __- -  

. ............. 

I' 15 - - 

x 10 - - 
1 
I 

5 -  11 - 
i' 

0- 

Figure 3. The magnetization M as a function 
of reduced caupling A/).< for each of the Wee 
laltices. 

Figure 4. The susceptibility x as a function of 
reduced coupling X J X .  for all three lattiw. 

Susceptibility. The susceptibility x (though not x') similarly appears to obey a 'law of 
corresponding states', as seen in figure 4. Near the critical point, it is found to be 

0.92(4)(1 - x / x c ) - ' [ -  In(1 - ~ / x ~ ) / ( x / x ~ ) ] " ~  

0.86(5)(1 - x / x , ) - ' [ -  In(1 - x / x c ) / ( x / x , ) ] ' f i  (BCC lattice) (3.20) 

0.86(6)(1- x / x , ) - ' [ -  h(1- x / x c ) / ( x / x ~ ) ] ' / 3  

(SC lattice) 

(FCC lattice) 
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2~""'"'""""'" I 
1 0.8 0.8 0.4 0.2 Figure 5. The ntio of the susceptibilities ar 

t i t  as a function of z for each lattice. 

from the strong-coupling side, and 

0.15(3)(1 - A2/AI)-'[- ln(1 - A2/@/(A 2 /Ac)] 2 'I3 

0.066(6)(1 - A2/A:)-'[- In (1 - A2/A:)/(A 2 /Ac)] * 

(sc lattice) 

X I  = 0.104(8)(1- A~/A;)-' [- In (1 - A ~ / L ~ ) / ( A  / k c ) ]  (BCC lattice) (3.21) 

(FCC lattice) 

ZA(5) (sc lattice) 1 2.4(4) (FCC lattice). 
= 2.3(3) (BCC lattice) (3.22) C+ x ( + f )  - = lim 

C- 1-0 4A,X'(-t) 

I 
from the weak-coupling side, so that the ratio 

The ratio is curving rapidly downwards as f + 0 (see figure 5), so that these results appear 
reasonably consistent with the RG prediction C+/C- = 2, at a 20% level of accuracy. The 
amplitude for x itself appears to be universal, in fact, for these three lattices. 

Energy gup. 
figure 6. Near the critical point, it behaves as 

The energy gap also behaves in a nearly universal fashion, as shown in 

2.05(8)(1 - x/xc)1/2[-In(l - ~ / . r ~ ) / ( x / x ~ ) I - ~ / ~  

2.11(5)(1 - x / x ~ ' ' ~ [ -  In(1 - ~ / . r ~ ) / ( x / x ~ ) ] ~ ~ ' ~  

(SC lattice) 

(FCC lattice) 
m = 2.09(7)(1 - x/xc)i~2[-ln(l - x/~.)/(x/&)l-"~ (BCC lattice) (3.23) 

(sc lattice) 

(BCC lattice) (3.24) 

(FCC lattice) 

2.80(2)(1 - A  2 /kc) 2 1'2 [-In (1 - A2/A2)/(A /Ac)] 

I 
from the strong-coupling side, and 

3.95(3)(1 - k / A : ) ' ' 2 [  - In (1 - A2/A:)/(A 2 /A,)] 2 - ' I6 

6.09(3)(1 - A2/At)"2[ - In (1 - A'/A:)/(A /Ac)] 2 2 



Series expansions for king model 544 1 

E 

Figure 6. The energy gap m as a function of 
reduced coupling xfx .  for a l l  three lattices. 

0.7 

0.65 
h 
4 
I 

\ 
7 0.6 

v 

E 

E 

- 
v 

0.55 

1 0.8 0.6 0.4 0.2 Figure 7. The mtia of energy gaps at At, as 
t a function o f f  for each lauice. 

from the weak-coupling side. The amplitude ratio is 

0.67(3) (sc lattice) 
0.67(3) (BCC kh?) (3.25) 
0.67(2) (FCC lattice). 

f +  - = lim 
f - r+o m’(-t)/,Lc 

Since these ratios are curving upwards as f + 0 (figure 7), these estimates again seem quite 
compatible with the RG prediction f+/f- = l/&, at about a 5% level of accuracy. The 
energy gap amplitudes themselves appear to be universal for these three lattices. 
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X 

"E 

Figure 8. The producl m2x x a function of 
reduced coupling x J x ,  for all three lattices. 

. 
h +J + 

l ~ " " " " " " ' " ' ' " ~  
1 0.8 0.8 0.4 0.2 0 

t 
Figure 9. 
function off for each lattice. 

The ratio of m'x at 33 ,  a s a  

A final test can be obtained by extrapolating the series for mZX,  which is predicted to 
approach a constant value at the critical point. Figure 8 shows the results for this quantity. 
Near the critical point, 

3.80(4) (SC lattice) 

3.87(4) (FCC lattice) 
3.85(6) (BCC lattice) (3.26) 
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from the strong-coupling side, and 
1.13(4) (SC lattice) 

, ‘*XI  = 1.63(10) (BCC lattice) I 2.44(4) (FCC lattice) 
(3.27) 

from the weak-coupling side. The amplitude ratio is shown in figure 9, and at the critical 
point it is found to be 

1.08(5) (sc lattice) 

1.08(5) (FCC lattice) 
lim m 2 ~ ( + t )  = 1.05(8) (BCClattice) 
1-0 4mRx‘(-t) /A, (3.28) 

According to (3.12H3.14) this ratio should be exactly 1. The result (3.28) is in fairly 
good agreement with t.he prediction, at about a %IO% level of accuracy. The results (3.26) 
are also in good agreement with the combined results (3.23) and (3.20). which provides 
evidence that the extrapolation procedure is consistent. 

4. Conclusions 

The results of the series analysis have mostly been consistent with the predictions of 
renormalization group theory. Firstly, the power-law exponents at the critical point were 
found to be consistent with the mean field values to within 5% or less. Then, assuming these 
exponents do take their mean field values, the exponents of the confluent logarithmic terms 
were found to be consistent with the predicted values at a 10-20% level of accuracy. And 
finally, assuming both power laws and logarithms have the predicted exponents, the ratios 
of the critical amplitudes above and below the critical point were found to approach their 
expected universal values for the susceptibility and energy gap, within accuracies ranging 
f” 540%. 

An exception is the critical amplitude ratio for the specific heat, which disagrees with 
the predicted value by a factor of two. The ratio is curving sharply upwards near the critical 
point, however, and the singuluity in the specific heat is weak, so we do not place too much 
weight on this discrepancy. 

The results also show a remarkable degree of universality between the three different 
lattices considered. When graphed against the ‘reduced’ coupling or ‘temperature’ variable, 
the results for the magnetization, susceptibility and energy gap are virtually indistinguishable 
for all three lattices, not only near the critical point but at all couplings. Even the specific 
heats are not very different. A ‘law of corresponding states’ seems to be obeyed very closely 
in this system. 
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